• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • PME: Projected Metric Embedding on Heterogeneous Networks for Link Prediction

    Author(s)
    Chen, Hongxu
    Yin, Hongzhi
    Wang, Weiqing
    Wang, Hao
    Quoc, Viet Hung Nguyen
    Li, Xue
    Griffith University Author(s)
    Nguyen, Henry
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Heterogenous information network embedding aims to embed heterogenous information networks (HINs) into low dimensional spaces, in which each vertex is represented as a low-dimensional vector, and both global and local network structures in the original space are preserved. However, most of existing heterogenous information network embedding models adopt the dot product to measure the proximity in the low dimensional space, and thus they can only preserve the first-order proximity and are insufficient to capture the global structure. Compared with homogenous information networks, there are multiple types of links (i.e., ...
    View more >
    Heterogenous information network embedding aims to embed heterogenous information networks (HINs) into low dimensional spaces, in which each vertex is represented as a low-dimensional vector, and both global and local network structures in the original space are preserved. However, most of existing heterogenous information network embedding models adopt the dot product to measure the proximity in the low dimensional space, and thus they can only preserve the first-order proximity and are insufficient to capture the global structure. Compared with homogenous information networks, there are multiple types of links (i.e., multiple relations) in HINs, and the link distribution w.r.t relations is highly skewed. To address the above challenging issues, we propose a novel heterogenous information network embedding model PME based on the metric learning to capture both first-order and second-order proximities in a unified way. To alleviate the potential geometrical inflexibility of existing metric learning approaches, we propose to build object and relation embeddings in separate object space and relation spaces rather than in a common space. Afterwards, we learn embeddings by firstly projecting vertices from object space to corresponding relation space and then calculate the proximity between projected vertices. To overcome the heavy skewness of the link distribution w.r.t relations and avoid "over-sampling'' or "under-sampling'' for each relation, we propose a novel loss-aware adaptive sampling approach for the model optimization. Extensive experiments have been conducted on a large-scale HIN dataset, and the experimental results show superiority of our proposed PME model in terms of prediction accuracy and scalability.
    View less >
    Conference Title
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING
    DOI
    https://doi.org/10.1145/3219819.3219986
    Subject
    Database systems
    Publication URI
    http://hdl.handle.net/10072/379947
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander