Show simple item record

dc.contributor.authorShi, Qin
dc.contributor.authorYin, Shiwei
dc.contributor.authorWang, Yun
dc.date.accessioned2019-06-12T12:32:07Z
dc.date.available2019-06-12T12:32:07Z
dc.date.issued2018
dc.identifier.issn2210-271X
dc.identifier.doi10.1016/j.comptc.2018.04.002
dc.identifier.urihttp://hdl.handle.net/10072/379964
dc.description.abstractThe understanding of intermolecular interactions holds the key for many applications of organic semiconductor materials, such as azabenzenes, since they govern molecular configurations and the electron transfer rate. While the high-level quantum mechanics (QM) method can supply accurate interaction energies, it is most often time-consuming, which limits its large-scale applications. To address this issue, the approach using the polarizable force field (e.g. AMOEBA) has been recently developed. The quality of the polarizable force field is largely determined by its anisotropic atomic multipole potential (AMP). In this paper, AMPs of azabenzenes are first derived by fitting the QM-based electrostatic potentials using various exchange–correlation functionals of the density functional theory (DFT). The performance of the derived AMPs on the computations of the intermolecular interactions between azabenzenes is systematically evaluated. The findings of this study demonstrate that the both DFT-derived and MP2-derived AMPs can reproduce intermolecular electrostatic interactions in terms of that from the golden standard CCSD(T)/CBS computations. Our findings, therefore, demonstrate the feasibility to use relatively cheap QM method to derive AMPs for azabenzenes.
dc.description.peerreviewedYes
dc.languageEnglish
dc.publisherElsevier BV
dc.publisher.placeNetherlands
dc.relation.ispartofpagefrom35
dc.relation.ispartofpageto41
dc.relation.ispartofjournalComputational and Theoretical Chemistry
dc.relation.ispartofvolume1132
dc.subject.fieldofresearchPhysical Chemistry not elsewhere classified
dc.subject.fieldofresearchPhysical Chemistry (incl. Structural)
dc.subject.fieldofresearchTheoretical and Computational Chemistry
dc.subject.fieldofresearchcode030699
dc.subject.fieldofresearchcode0306
dc.subject.fieldofresearchcode0307
dc.titleDFT-derived atomic multipoles in AMOEBA force field for calculating intermolecular interactions of azabenzenes dimers
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
gro.hasfulltextNo Full Text
gro.griffith.authorWang, Yun


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record