Show simple item record

dc.contributor.authorZou, Yihui
dc.contributor.authorChang, Guojing
dc.contributor.authorJia, Yi Alec
dc.contributor.authorCai, Rongsheng
dc.contributor.authorChen, Shuai
dc.contributor.authorXia, Yanzhi
dc.contributor.authorTheis, Wolfgang
dc.contributor.authorYang, Dongjiang
dc.contributor.authorYao, Xiangdong
dc.date.accessioned2019-06-07T01:41:30Z
dc.date.available2019-06-07T01:41:30Z
dc.date.issued2018
dc.identifier.issn2405-8297
dc.identifier.doi10.1016/j.ensm.2018.04.005
dc.identifier.urihttp://hdl.handle.net/10072/380014
dc.description.abstractDefects in the catalyst are considered to be important for generating the active sites for electrocatalytic reactions, due to the changed distribution of the charge density. In this work, Li vacancy defects are purposely created in a series of one-dimensional (1D) porous multi-shell Li(NixCoyMnz)O2 hollow fibers by a facile electrochemical lithium ion (Li+) intercalation and extraction. The total Li vacancy concentrations are 0.52, 0.49, and 0.53 in one unit of delithiated Li(NixCoyMnz)O2 hollow fibers (De-Li(NixCoyMnz)O2) for De-Li(Ni0.20Co0.60Mn0.20)O2, De-Li(Ni0.33Co0.33Mn0.33)O2, De-Li(Ni0.65Co0.25Mn0.10)O2, respectively. When evaluated as oxygen electrocatalysts, the De-Li(Ni0.2Co0.6Mn0.2)O2 shows the best performance with onset potential of ~ 1.46 V vs. reversible hydrogen electrode (RHE) outperforming IrO2/C at 1 M KOH in OER and much improved onset potential of ~ 0.85 V vs. RHE than that of Li(Ni0.2Co0.6Mn0.2)O2 (~ 0.71 V vs. RHE) at 0.1 M KOH in ORR. Density functional theory (DFT) calculations for the sample before and after delithiation certified that the delithiated samples have a significantly improved carrier concentration and electronic conductivity in the Co-d orbitals near the sites of Li vacancies. This results in enhanced H2O (3.34 eV) and O2 (2.75 eV) adsorption energies and thus greatly reduces the OER-ORR potential difference (∆E) (0.17 V). A ZAB with the De-Li(Ni0.2Co0.6Mn0.2)O2 as the air cathode was also assembled, which shows high efficiency and long-term stability. At a constant current rate of 5 mA cm-2, the final charge and discharge potential is ~ 1.97 V and ~ 1.23 V after 441 h.
dc.description.peerreviewedYes
dc.languageEnglish
dc.language.isoeng
dc.publisherElsevier
dc.publisher.placeNetherlands
dc.relation.ispartofpagefrom202
dc.relation.ispartofpageto208
dc.relation.ispartofjournalEnergy Storage Materials
dc.relation.ispartofvolume15
dc.subject.fieldofresearchChemical engineering
dc.subject.fieldofresearchElectrical engineering
dc.subject.fieldofresearchcode4004
dc.subject.fieldofresearchcode4008
dc.titleGenerating lithium vacancies through delithiation of Li(NixCoyMnz)O2 towards bifunctional electrocatalysts for rechargeable zinc-air batteries
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
dcterms.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.description.versionAccepted Manuscript (AM)
gro.rights.copyright© 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
gro.hasfulltextFull Text
gro.griffith.authorJia, Yi


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record