• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Solid-phase extraction as sample preparation of water samples for cell-based and other in vitro bioassays

    Thumbnail
    View/Open
    NealePUB6449.pdf (511.3Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Neale, Peta A
    Brack, Werner
    Ait-Aissa, Selim
    Busch, Wibke
    Hollender, Juliane
    Krauss, Martin
    Maillot-Marechal, Emmanuelle
    Munz, Nicole A
    Schlichting, Rita
    Schulze, Tobias
    Vogler, Bernadette
    Escher, Beate I
    Griffith University Author(s)
    Neale, Peta A.
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    In vitro bioassays are increasingly used for water quality monitoring. Surface water samples often need to be enriched to observe an effect and solid-phase extraction (SPE) is commonly applied for this purpose. The applied methods are typically optimised for the recovery of target chemicals and not for effect recovery for bioassays. A review of the few studies that have evaluated SPE recovery for bioassays showed a lack of experimentally determined recoveries. Therefore, we systematically measured effect recovery of a mixture of 579 organic chemicals covering a wide range of physicochemical properties that were spiked into ...
    View more >
    In vitro bioassays are increasingly used for water quality monitoring. Surface water samples often need to be enriched to observe an effect and solid-phase extraction (SPE) is commonly applied for this purpose. The applied methods are typically optimised for the recovery of target chemicals and not for effect recovery for bioassays. A review of the few studies that have evaluated SPE recovery for bioassays showed a lack of experimentally determined recoveries. Therefore, we systematically measured effect recovery of a mixture of 579 organic chemicals covering a wide range of physicochemical properties that were spiked into a pristine water sample and extracted using large volume solid-phase extraction (LVSPE). Assays indicative of activation of xenobiotic metabolism, hormone receptor-mediated effects and adaptive stress responses were applied, with non-specific effects determined through cytotoxicity measurements. Overall, effect recovery was found to be similar to chemical recovery for the majority of bioassays and LVSPE blanks had no effect. Multi-layer SPE exhibited greater recovery of spiked chemicals compared to LVSPE, but the blanks triggered cytotoxicity at high enrichment. Chemical recovery data together with single chemical effect data were used to retrospectively estimate with reverse recovery modelling that there was typically less than 30% effect loss expected due to reduced SPE recovery in published surface water monitoring studies. The combination of targeted experiments and mixture modelling clearly shows the utility of SPE as a sample preparation method for surface water samples, but also emphasizes the need for adequate controls when extraction methods are adapted from chemical analysis workflows.
    View less >
    Journal Title
    Environmental Science: Processes and Impacts
    Volume
    20
    Issue
    3
    DOI
    https://doi.org/10.1039/c7em00555e
    Funder(s)
    NHMRC
    Grant identifier(s)
    APP1074775
    Copyright Statement
    © 2018 Royal Society of Chemistry. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
    Subject
    Chemical sciences
    Environmental sciences
    Other environmental sciences not elsewhere classified
    Biomedical and clinical sciences
    Publication URI
    http://hdl.handle.net/10072/380170
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander