Strength Development of Soil-Fly Ash Geopolymer: Assessment of Soil, Fly Ash, Alkali Activators, and Water

View/ Open
File version
Version of Record (VoR)
Author(s)
Leong, Hsiao Yun
Ong, Dominic Ek Leong
Sanjayan, Jay G
Nazari, Ali
Griffith University Author(s)
Year published
2018
Metadata
Show full item recordAbstract
In this study, fly ash was added to residual soil to produce soil–fly ash geopolymer bricks. This study investigated the effects of fly ash/soil, alkali activator/ash, Na2SiO3/KOH (or NaOH), additional water content, curing condition, and curing temperature on the compressive strength of soil–fly ash geopolymer. The results showed that the optimum compressive strength was obtained when the ratios of alkali activator/ash, Na2SiO3/KOH (or NaOH) and additional water were 0.6, 0.5, and 10% respectively. A higher amount of alkali activators was required for strength development in soil–ly ash geopolymer than conventional fly ...
View more >In this study, fly ash was added to residual soil to produce soil–fly ash geopolymer bricks. This study investigated the effects of fly ash/soil, alkali activator/ash, Na2SiO3/KOH (or NaOH), additional water content, curing condition, and curing temperature on the compressive strength of soil–fly ash geopolymer. The results showed that the optimum compressive strength was obtained when the ratios of alkali activator/ash, Na2SiO3/KOH (or NaOH) and additional water were 0.6, 0.5, and 10% respectively. A higher amount of alkali activators was required for strength development in soil–ly ash geopolymer than conventional fly ash-based geopolymers. The formation of the rigid structure at low ratios of alkali activator/ash and Na2SiO3/KOH (or NaOH) was unlikely. Compressive strength decreased when additional water was increased. High curing temperature and long curing duration showed a negative effect on strength development. The compressive strength of the soil–fly ash geopolymer varied as different mixing sequences of raw materials were used, indicating the importance of the formation of geopolymer gel in the structure. Compressive strength results obtained in this study demonstrate that soil–fly ash geopolymer can be a potential alternative to traditional clay-fired brick.
View less >
View more >In this study, fly ash was added to residual soil to produce soil–fly ash geopolymer bricks. This study investigated the effects of fly ash/soil, alkali activator/ash, Na2SiO3/KOH (or NaOH), additional water content, curing condition, and curing temperature on the compressive strength of soil–fly ash geopolymer. The results showed that the optimum compressive strength was obtained when the ratios of alkali activator/ash, Na2SiO3/KOH (or NaOH) and additional water were 0.6, 0.5, and 10% respectively. A higher amount of alkali activators was required for strength development in soil–ly ash geopolymer than conventional fly ash-based geopolymers. The formation of the rigid structure at low ratios of alkali activator/ash and Na2SiO3/KOH (or NaOH) was unlikely. Compressive strength decreased when additional water was increased. High curing temperature and long curing duration showed a negative effect on strength development. The compressive strength of the soil–fly ash geopolymer varied as different mixing sequences of raw materials were used, indicating the importance of the formation of geopolymer gel in the structure. Compressive strength results obtained in this study demonstrate that soil–fly ash geopolymer can be a potential alternative to traditional clay-fired brick.
View less >
Journal Title
Journal of Materials in Civil Engineering
Volume
30
Issue
8
Copyright Statement
© 2018 American Society of Civil Engineers (ASCE). This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Polymerisation mechanisms
Civil engineering
Construction materials
Materials engineering
Functional materials