• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • What is driving the NF-κB response in environmental water extracts?

    Thumbnail
    View/Open
    NealePUB6505.pdf (448.9Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Neale, Peta A
    Leusch, Frederic DL
    Escher, Beate
    Griffith University Author(s)
    Leusch, Frederic
    Neale, Peta A.
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    In vitro bioassays are increasingly applied for water quality monitoring, with assays indicative of adaptive stress responses commonly included in test batteries. The NF-κB assay is responsive to surface water and wastewater extracts, but the causative compounds are unknown and micropollutants typically found in water do not activate the NF-κB assay. The current study aimed to investigate if co-extracted organic matter and/or endotoxins could cause the NF-κB response in surface water extracts. The effect of model bacterial lipopolysaccharides (LPS) and dissolved organic carbon (DOC) was evaluated in the NF-κB assay both ...
    View more >
    In vitro bioassays are increasingly applied for water quality monitoring, with assays indicative of adaptive stress responses commonly included in test batteries. The NF-κB assay is responsive to surface water and wastewater extracts, but the causative compounds are unknown and micropollutants typically found in water do not activate the NF-κB assay. The current study aimed to investigate if co-extracted organic matter and/or endotoxins could cause the NF-κB response in surface water extracts. The effect of model bacterial lipopolysaccharides (LPS) and dissolved organic carbon (DOC) was evaluated in the NF-κB assay both before and after solid-phase extraction (SPE), with 7% effect recovery for LPS and between 7 and 52% effect recovery for DOC observed. The NF-κB response, endotoxin activity, micropollutant concentration and total organic carbon concentration was measured in four surface water extracts. All water extracts showed a response in the NF-κB assay, but the detected micropollutants could not explain the effect. Comparison of predicted bioanalytical equivalent concentrations based on micropollutant, DOC and endotoxin concentrations in surface water with experimental bioanalytical equivalent concentrations suggest that co-extracted endotoxins are the most important drivers of the observed effect, with DOC only having a minor contribution. While in vitro bioassays typically detect mixtures of organic micropollutants, the current study shows that the NF-κB assay can integrate the effects of co-extracted endotoxins. Given that endotoxins can pose a risk for human health, the NF-κB assay is a valuable inclusion in bioanalytical test batteries used for water quality monitoring.
    View less >
    Journal Title
    Chemosphere
    Volume
    210
    DOI
    https://doi.org/10.1016/j.chemosphere.2018.07.052
    Copyright Statement
    © 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Other environmental sciences not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/380197
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander