Magnetophoretic separation of diamagnetic particles through parallel ferrofluid streams

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Munaz, Ahmed
Shiddiky, Muhammad JA
Nam-Trung, Nguyen
Year published
2018
Metadata
Show full item recordAbstract
Particle separation based on microfluidic technology offers a simple, reliable, and low-cost approach for the diagnosis of diseases. The separation concept can be extended to genetic engineering, cell transplantation, and immunology. This paper reports a simple microfluidic platform for the separation of diamagnetic particles of different sizes utilizing parallel ferrofluid streams. The ferrofluid streams with predefined concentrations of magnetic nanoparticles promote negative magnetophoresis and are able to separate a particle mixture with a subtle size variation. Numerical simulation was used to optimise the magnetic field ...
View more >Particle separation based on microfluidic technology offers a simple, reliable, and low-cost approach for the diagnosis of diseases. The separation concept can be extended to genetic engineering, cell transplantation, and immunology. This paper reports a simple microfluidic platform for the separation of diamagnetic particles of different sizes utilizing parallel ferrofluid streams. The ferrofluid streams with predefined concentrations of magnetic nanoparticles promote negative magnetophoresis and are able to separate a particle mixture with a subtle size variation. Numerical simulation was used to optimise the magnetic field gradient, e.g. the number and position of the external permanent magnets. The effect of flow rate ratio and the concentration distribution were analyzed by the simulation and validated by experiments. Furthermore, two-stream and three-stream ferrofluid configurations were evaluated to find the optimum separation performance. The experimental results show a maximum separation efficiency of 78% and 75% with three-stream configuration for 3.2-μm and 4.8-μm particles, respectively.
View less >
View more >Particle separation based on microfluidic technology offers a simple, reliable, and low-cost approach for the diagnosis of diseases. The separation concept can be extended to genetic engineering, cell transplantation, and immunology. This paper reports a simple microfluidic platform for the separation of diamagnetic particles of different sizes utilizing parallel ferrofluid streams. The ferrofluid streams with predefined concentrations of magnetic nanoparticles promote negative magnetophoresis and are able to separate a particle mixture with a subtle size variation. Numerical simulation was used to optimise the magnetic field gradient, e.g. the number and position of the external permanent magnets. The effect of flow rate ratio and the concentration distribution were analyzed by the simulation and validated by experiments. Furthermore, two-stream and three-stream ferrofluid configurations were evaluated to find the optimum separation performance. The experimental results show a maximum separation efficiency of 78% and 75% with three-stream configuration for 3.2-μm and 4.8-μm particles, respectively.
View less >
Journal Title
Sensors and Actuators B: Chemical
Volume
275
Copyright Statement
© 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Subject
Atomic, molecular and optical physics
Atomic, molecular and optical physics not elsewhere classified
Analytical chemistry
Materials engineering