• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Magnetophoretic separation of diamagnetic particles through parallel ferrofluid streams

    Thumbnail
    View/Open
    MunazPUB6504.pdf (1.558Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Munaz, Ahmed
    Shiddiky, Muhammad JA
    Nam-Trung, Nguyen
    Griffith University Author(s)
    Nguyen, Nam-Trung
    Shiddiky, Muhammad J.
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Particle separation based on microfluidic technology offers a simple, reliable, and low-cost approach for the diagnosis of diseases. The separation concept can be extended to genetic engineering, cell transplantation, and immunology. This paper reports a simple microfluidic platform for the separation of diamagnetic particles of different sizes utilizing parallel ferrofluid streams. The ferrofluid streams with predefined concentrations of magnetic nanoparticles promote negative magnetophoresis and are able to separate a particle mixture with a subtle size variation. Numerical simulation was used to optimise the magnetic field ...
    View more >
    Particle separation based on microfluidic technology offers a simple, reliable, and low-cost approach for the diagnosis of diseases. The separation concept can be extended to genetic engineering, cell transplantation, and immunology. This paper reports a simple microfluidic platform for the separation of diamagnetic particles of different sizes utilizing parallel ferrofluid streams. The ferrofluid streams with predefined concentrations of magnetic nanoparticles promote negative magnetophoresis and are able to separate a particle mixture with a subtle size variation. Numerical simulation was used to optimise the magnetic field gradient, e.g. the number and position of the external permanent magnets. The effect of flow rate ratio and the concentration distribution were analyzed by the simulation and validated by experiments. Furthermore, two-stream and three-stream ferrofluid configurations were evaluated to find the optimum separation performance. The experimental results show a maximum separation efficiency of 78% and 75% with three-stream configuration for 3.2-μm and 4.8-μm particles, respectively.
    View less >
    Journal Title
    Sensors and Actuators B: Chemical
    Volume
    275
    DOI
    https://doi.org/10.1016/j.snb.2018.07.176
    Copyright Statement
    © 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Atomic, molecular and optical physics
    Atomic, molecular and optical physics not elsewhere classified
    Analytical chemistry
    Materials engineering
    Publication URI
    http://hdl.handle.net/10072/380205
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander