• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Graphene-Oxide-Loaded Superparamagnetic Iron Oxide Nanoparticles for Ultrasensitive Electrocatalytic Detection of MicroRNA

    Author(s)
    Islam, Md Nazmul
    Gorgannezhad, Lena
    Masud, Mostafa Kamal
    Tanaka, Shunsuke
    Hossain, Md Shahriar A
    Yamauchi, Yusuke
    Nam-Trung, Nguyen
    Shiddiky, Muhammad JA
    Griffith University Author(s)
    Nguyen, Nam-Trung
    Shiddiky, Muhammad J.
    Gorgannezhad, Lena
    Masud, Mostafa Kamal K.
    Islam, Nazmul
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    We report the electrocatalytic activity of a new class of superparamagnetic nanoparticles, graphene‐oxide‐loaded iron oxide (GO/IO hybrid material), towards the reduction of ruthenium hexaammine(III) chloride (Ru(NH3)6]3+, RuHex). Leveraging the electrocatalytic activity of the GO/IO hybrid material and the signal enhancement capacity of [Ru(NH3)6]3+/[Fe(CN)6]3− in an electrocatalytic cycle, an ultrasensitive and specific electrochemical sensor was developed for the detection of cancer‐related microRNA (miRNA). Using the direct affinity interaction between RNA and graphene oxide, magnetically isolated and purified target ...
    View more >
    We report the electrocatalytic activity of a new class of superparamagnetic nanoparticles, graphene‐oxide‐loaded iron oxide (GO/IO hybrid material), towards the reduction of ruthenium hexaammine(III) chloride (Ru(NH3)6]3+, RuHex). Leveraging the electrocatalytic activity of the GO/IO hybrid material and the signal enhancement capacity of [Ru(NH3)6]3+/[Fe(CN)6]3− in an electrocatalytic cycle, an ultrasensitive and specific electrochemical sensor was developed for the detection of cancer‐related microRNA (miRNA). Using the direct affinity interaction between RNA and graphene oxide, magnetically isolated and purified target miRNA were directly adsorbed onto a screen‐printed electrode modified with the GO/IO hybrid material. The detection was enabled by chronocoulometric (CC) readout of charge‐compensating [Ru(NH3)6]3+ followed by an enhancement in CC charge display through the Ru(NH3)6]3+/[Fe(CN)6]3− system. We demonstrate an excellent limit of detection of 1.0 fM by accurately detecting miR‐21 in synthetic samples and showcase its clinical utility in ovarian cancer cell lines with high sensitivity (ten cells) and good reproducibility (% RSD=<5 %, for n=3).
    View less >
    Journal Title
    ChemElectroChem
    Volume
    5
    Issue
    17
    DOI
    https://doi.org/10.1002/celc.201800339
    Subject
    Analytical chemistry
    Physical chemistry
    Other chemical sciences
    Other chemical sciences not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/380273
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander