Performance of Field and Numerical Back-Analysis of Floating Stone Columns in Soft Clay Considering the Influence of Dilatancy

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Ong, DEL
Sim, YS
Leung, CF
Griffith University Author(s)
Year published
2018
Metadata
Show full item recordAbstract
Stone column use has gained popularity around the globe as an effective ground improvement technique to improve the load-bearing capacity of soft soils. End-bearing stone columns are commonly used, but occasionally floating stone columns are adopted since they have been proven to achieve the necessary load-carrying capacity and serviceability requirements. However, stone column parameters are often estimated without much basis for simulation and design purposes due to a lack of practical research and real-life case studies in this area. Hence, in order to develop a fundamental understanding of the load-settlement responses ...
View more >Stone column use has gained popularity around the globe as an effective ground improvement technique to improve the load-bearing capacity of soft soils. End-bearing stone columns are commonly used, but occasionally floating stone columns are adopted since they have been proven to achieve the necessary load-carrying capacity and serviceability requirements. However, stone column parameters are often estimated without much basis for simulation and design purposes due to a lack of practical research and real-life case studies in this area. Hence, in order to develop a fundamental understanding of the load-settlement responses of floating stone columns in soft clays, detailed back-analysis was performed in this study. Throughout the back-analysis, all the numerical models were validated by comparing the analysis results with field measurements. This study highlights the existence of some critical interpreted parameters, namely soil cohesion c′, friction angle ϕ′, and dilation angle ψ′, as well as the soil–structure interaction mechanism that influences the load-settlement responses of the floating stone columns. The successful characterization of the stone column materials and the modeling technique of stone columns in finite element analyses show great potential in assessing the real-life performance of floating stone columns in soft clays.
View less >
View more >Stone column use has gained popularity around the globe as an effective ground improvement technique to improve the load-bearing capacity of soft soils. End-bearing stone columns are commonly used, but occasionally floating stone columns are adopted since they have been proven to achieve the necessary load-carrying capacity and serviceability requirements. However, stone column parameters are often estimated without much basis for simulation and design purposes due to a lack of practical research and real-life case studies in this area. Hence, in order to develop a fundamental understanding of the load-settlement responses of floating stone columns in soft clays, detailed back-analysis was performed in this study. Throughout the back-analysis, all the numerical models were validated by comparing the analysis results with field measurements. This study highlights the existence of some critical interpreted parameters, namely soil cohesion c′, friction angle ϕ′, and dilation angle ψ′, as well as the soil–structure interaction mechanism that influences the load-settlement responses of the floating stone columns. The successful characterization of the stone column materials and the modeling technique of stone columns in finite element analyses show great potential in assessing the real-life performance of floating stone columns in soft clays.
View less >
Journal Title
International Journal of Geomechanics
Volume
18
Issue
10
Copyright Statement
© 2018 American Society of Civil Engineers (ASCE). This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Mineralogy and crystallography
Civil engineering
Civil geotechnical engineering
Construction materials
Resources engineering and extractive metallurgy