Transfer-hydrogenation of furfural and levulinic acid over supported copper catalyst
Author(s)
Gong, Wanbing
Chen, Chun
Fan, Ruoyu
Zhang, Haimin
Wang, Guozhong
Zhao, Huijun
Griffith University Author(s)
Year published
2018
Metadata
Show full item recordAbstract
Transfer-hydrogenation (TH) has attracted great attention because it does not require the use of high pressure H2. In this work, we report a facile ultrasound-assisted impregnation method with the aid of carbothermal reduction property of activated carbon (AC) to synthesize AC supported copper catalyst (Cu/AC) for efficient TH of bio-derived unsaturated oxygenated compounds such as furfural (FAL) and levulinic acid (LA). In the presence of 2-propanol as the hydrogen donor, within 5 h under 200 °C, the resultant Cu/AC catalyst can convert FAL into 2-methylfuran (2-MF, a high-value fuel additive) with a superior selectivity ...
View more >Transfer-hydrogenation (TH) has attracted great attention because it does not require the use of high pressure H2. In this work, we report a facile ultrasound-assisted impregnation method with the aid of carbothermal reduction property of activated carbon (AC) to synthesize AC supported copper catalyst (Cu/AC) for efficient TH of bio-derived unsaturated oxygenated compounds such as furfural (FAL) and levulinic acid (LA). In the presence of 2-propanol as the hydrogen donor, within 5 h under 200 °C, the resultant Cu/AC catalyst can convert FAL into 2-methylfuran (2-MF, a high-value fuel additive) with a superior selectivity of 91.6%. The Cu/AC catalyst can also covert LA into γ-valerolactone (GVL) with a high selectivity of 89.9% under 220 °C for 5 h. The superior TH catalytic performance of the Cu/AC catalyst could be attributed to the uniform size and well dispersed Cu nanoparticles supported on the high surface area AC with the suitable proportion of Cu2+, Cu0 and Cu+. Cycling test results confirm the reusability of the Cu/AC catalyst. Additionally, the reported Cu/AC catalyst is cheap and massive producible, advantageous for large-scale conversion of bio-derived platforms to value-added chemicals and bio-fuels.
View less >
View more >Transfer-hydrogenation (TH) has attracted great attention because it does not require the use of high pressure H2. In this work, we report a facile ultrasound-assisted impregnation method with the aid of carbothermal reduction property of activated carbon (AC) to synthesize AC supported copper catalyst (Cu/AC) for efficient TH of bio-derived unsaturated oxygenated compounds such as furfural (FAL) and levulinic acid (LA). In the presence of 2-propanol as the hydrogen donor, within 5 h under 200 °C, the resultant Cu/AC catalyst can convert FAL into 2-methylfuran (2-MF, a high-value fuel additive) with a superior selectivity of 91.6%. The Cu/AC catalyst can also covert LA into γ-valerolactone (GVL) with a high selectivity of 89.9% under 220 °C for 5 h. The superior TH catalytic performance of the Cu/AC catalyst could be attributed to the uniform size and well dispersed Cu nanoparticles supported on the high surface area AC with the suitable proportion of Cu2+, Cu0 and Cu+. Cycling test results confirm the reusability of the Cu/AC catalyst. Additionally, the reported Cu/AC catalyst is cheap and massive producible, advantageous for large-scale conversion of bio-derived platforms to value-added chemicals and bio-fuels.
View less >
Journal Title
Fuel
Volume
231
Subject
Physical chemistry
Physical chemistry not elsewhere classified
Chemical engineering
Mechanical engineering