• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Transfer-hydrogenation of furfural and levulinic acid over supported copper catalyst

    Author(s)
    Gong, Wanbing
    Chen, Chun
    Fan, Ruoyu
    Zhang, Haimin
    Wang, Guozhong
    Zhao, Huijun
    Griffith University Author(s)
    Zhao, Huijun
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Transfer-hydrogenation (TH) has attracted great attention because it does not require the use of high pressure H2. In this work, we report a facile ultrasound-assisted impregnation method with the aid of carbothermal reduction property of activated carbon (AC) to synthesize AC supported copper catalyst (Cu/AC) for efficient TH of bio-derived unsaturated oxygenated compounds such as furfural (FAL) and levulinic acid (LA). In the presence of 2-propanol as the hydrogen donor, within 5 h under 200 °C, the resultant Cu/AC catalyst can convert FAL into 2-methylfuran (2-MF, a high-value fuel additive) with a superior selectivity ...
    View more >
    Transfer-hydrogenation (TH) has attracted great attention because it does not require the use of high pressure H2. In this work, we report a facile ultrasound-assisted impregnation method with the aid of carbothermal reduction property of activated carbon (AC) to synthesize AC supported copper catalyst (Cu/AC) for efficient TH of bio-derived unsaturated oxygenated compounds such as furfural (FAL) and levulinic acid (LA). In the presence of 2-propanol as the hydrogen donor, within 5 h under 200 °C, the resultant Cu/AC catalyst can convert FAL into 2-methylfuran (2-MF, a high-value fuel additive) with a superior selectivity of 91.6%. The Cu/AC catalyst can also covert LA into γ-valerolactone (GVL) with a high selectivity of 89.9% under 220 °C for 5 h. The superior TH catalytic performance of the Cu/AC catalyst could be attributed to the uniform size and well dispersed Cu nanoparticles supported on the high surface area AC with the suitable proportion of Cu2+, Cu0 and Cu+. Cycling test results confirm the reusability of the Cu/AC catalyst. Additionally, the reported Cu/AC catalyst is cheap and massive producible, advantageous for large-scale conversion of bio-derived platforms to value-added chemicals and bio-fuels.
    View less >
    Journal Title
    Fuel
    Volume
    231
    DOI
    https://doi.org/10.1016/j.fuel.2018.05.075
    Subject
    Physical chemistry
    Physical chemistry not elsewhere classified
    Chemical engineering
    Mechanical engineering
    Publication URI
    http://hdl.handle.net/10072/380280
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander