• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Bridging the gap: Optimized fabrication of robust titania nanostructures on complex implant geometries towards clinical translation

    Thumbnail
    View/Open
    LiPUB5422.pdf (2.184Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Li, Tao
    Gulati, Karan
    Wang, Na
    Zhang, Zhenting
    Ivanovski, Sago
    Griffith University Author(s)
    Ivanovski, Saso
    Gulati, Karan
    Li, Tao
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Electrochemically anodized titanium surfaces with titania nanostructures (TNS; nanopores, nanotubes, etc.) have been widely applied as therapeutic bone/dental implant modifications. Despite the numerous advancements in the field of electrochemical anodization (EA), in terms of translation into the current implant market, research gaps in this domain include the lack of fabrication optimization, performed on a substrate of conventional implant surface/geometry, and inadequate mechanical stability. In the current study, we investigate the role of substrate pre-treatment on achieving desired nanotopographies for the purpose of ...
    View more >
    Electrochemically anodized titanium surfaces with titania nanostructures (TNS; nanopores, nanotubes, etc.) have been widely applied as therapeutic bone/dental implant modifications. Despite the numerous advancements in the field of electrochemical anodization (EA), in terms of translation into the current implant market, research gaps in this domain include the lack of fabrication optimization, performed on a substrate of conventional implant surface/geometry, and inadequate mechanical stability. In the current study, we investigate the role of substrate pre-treatment on achieving desired nanotopographies for the purpose of reproducing optimized nanostructures on the complex geometry of commercial implant surfaces, as well as in-depth mechanical stability testing of these nano-engineered coatings. The results confirmed that: (a) substrate polishing/smoothening may be insignificant with respect to fabrication of well-ordered and high quality TNS on micro-rough implants with preserved underlying micro-roughness; (b) optimized outcomes can be successfully translated onto complex geometries characteristic of the current implant market, including dental implant abutments and screws (also applicable to a wider implant market including orthopaedics); (c) mechanical stability testing revealed improved modulus and hardness values as compared to conventional nanotubes/pores. We believe that such optimization advances the existing knowledge of titanium anodization and anodized implants towards integration into the current implant market and successful clinical translation.
    View less >
    Journal Title
    Journal of Colloid and Interface Science
    Volume
    529
    DOI
    https://doi.org/10.1016/j.jcis.2018.06.004
    Copyright Statement
    © 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Physical sciences
    Chemical sciences
    Engineering
    Dental materials and equipment
    Publication URI
    http://hdl.handle.net/10072/380404
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander