• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Multifunctional Three-Phase Four-Leg PV-SVSI With Dynamic Capacity Distribution Method

    Author(s)
    Hossain, MJ
    Rafi, Fida Hasan Md
    Town, Graham
    Lu, Junwei
    Griffith University Author(s)
    Lu, Junwei
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    The unequal single-phase load distribution in three-phase (3P) four-wire (4W) low-voltage (LV) networks can cause significant neutral current and neutral to ground voltage rise problems at both customer and distribution transformer terminals. High neutral current can overload the neutral conductors and can cause electrical safety concerns to the users. To mitigate the high neutral current problem in an unbalanced residential LV network, a multifunctional 3P four-leg (4L) rooftop photovoltaic (PV) smart voltage source inverter (SVSI) is designed with improved active neutral current compensation along with active power export ...
    View more >
    The unequal single-phase load distribution in three-phase (3P) four-wire (4W) low-voltage (LV) networks can cause significant neutral current and neutral to ground voltage rise problems at both customer and distribution transformer terminals. High neutral current can overload the neutral conductors and can cause electrical safety concerns to the users. To mitigate the high neutral current problem in an unbalanced residential LV network, a multifunctional 3P four-leg (4L) rooftop photovoltaic (PV) smart voltage source inverter (SVSI) is designed with improved active neutral current compensation along with active power export and point of common coupling (PCC) voltage regulation. A novel dynamic capacity distribution (DCD) method is proposed using the available SVSI capacity after active and reactive power operations to achieve higher capacity neutral compensation at the PCC. The performance of the designed 3P-4L PV-SVSI with the DCD method is compared with a traditional 4L SVSI with fixed unbalanced compensation capacity and a passive unbalance compensator, such as a zig-zag transformer, in PSCAD/EMTDC software. Several case studies, such as balanced and unbalanced load changing effects, are presented with actual residential loads connected to an Australian 3P-4W LV network. A Semikron Semiteach modified inverter and a real-time TMSF28335 DSP microcontroller are also used to provide experimental verification on the improvement of the proposed neutral current compensation with the DCD method. Detailed simulations and experimental studies are presented to verify the robustness and efficacy of the proposed control strategy with the designed 3P-4L PV-SVSI.
    View less >
    Journal Title
    IEEE Transactions on Industrial Informatics
    Volume
    14
    Issue
    6
    DOI
    https://doi.org/10.1109/TII.2018.2805913
    Subject
    Engineering
    Other engineering not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/380431
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander