• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Application of nuclear techniques to environmental plastics research

    Author(s)
    Lanctot, Chantal M
    Al-Sid-Cheikh, Maya
    Catarino, Ana
    Cresswell, Tom
    Danis, Bruno
    Karapanagioti, Hrissi K
    Mincer, Tracy
    Oberhansli, Francois
    Swarzenski, Peter
    Tolosa, Imma
    Metian, Marc
    Griffith University Author(s)
    Lanctot, Chantal
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Plastic pollution is ubiquitous in aquatic environments and its potential impacts to wildlife and humans present a growing global concern. Despite recent efforts in understanding environmental impacts associated with plastic pollution, considerable uncertainties still exist regarding the true risks of nano- and micro-sized plastics (<5 mm). The challenges faced in this field largely relate to the methodological and analytical limitations associated with studying plastic debris at low (environmentally relevant) concentrations. The present paper highlights how radiotracing techniques that are commonly applied to trace the fate ...
    View more >
    Plastic pollution is ubiquitous in aquatic environments and its potential impacts to wildlife and humans present a growing global concern. Despite recent efforts in understanding environmental impacts associated with plastic pollution, considerable uncertainties still exist regarding the true risks of nano- and micro-sized plastics (<5 mm). The challenges faced in this field largely relate to the methodological and analytical limitations associated with studying plastic debris at low (environmentally relevant) concentrations. The present paper highlights how radiotracing techniques that are commonly applied to trace the fate and behaviour of chemicals and particles in various systems, can contribute towards addressing several important and outstanding questions in environmental plastic pollution research. Specifically, we discuss the use of radiolabeled microplastics and/or chemicals for 1) determining sorption/desorption kinetics of a range of contaminants to different types of plastics under varying conditions, 2) understanding the influence of microplastics on contaminant and nutrient bioaccumulation in aquatic organisms, and 3) assessing biokinetics, biodistribution, trophic transfer and potential biological impacts of microplastic at realistic concentrations. Radiotracer techniques are uniquely suited for this research because of their sensitivity, accuracy and capacity to measure relevant parameters over time. Obtaining precise and timely information on the fate of plastic particles and co-contaminants in wildlife has widespread applications towards effective monitoring programmes and environmental management strategies.
    View less >
    Journal Title
    Journal of Environmental Radioactivity
    Volume
    192
    DOI
    https://doi.org/10.1016/j.jenvrad.2018.07.019
    Subject
    Bioavailability and ecotoxicology
    Publication URI
    http://hdl.handle.net/10072/380582
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander