Efficient and Robust Cu/TiO2 Nanorod Photocatalysts for Simultaneous Removal of Cr(VI) and Methylene Blue under Solar Light
Author(s)
Guan, Haojian
Zhou, Xiaosong
Wen, Willian
Jin, Bei
Li, Jiajia
Zhang, Shanqing
Year published
2018
Metadata
Show full item recordAbstract
Because of its large bandgap, TiO2 can function only under UV light. TiO2 surface modification with noble metal nanoparticles can extend the light absorption from UV to visible light region and enhance the photocatalytic quantum yield. In this work, TiO2 nanorods (Cu/TiO2) modified by copper nanoparticles were prepared by a one‐step solvothermal method at low cost. The resultant Cu/TiO2 nanorods show excellent synergistic effect in the oxidation of methylene blue (MB) and the reduction of aqueous Cr(VI) under solar light irradiation. Mechanistic investigation suggests that the Cr(VI) species could effectively scavenge the ...
View more >Because of its large bandgap, TiO2 can function only under UV light. TiO2 surface modification with noble metal nanoparticles can extend the light absorption from UV to visible light region and enhance the photocatalytic quantum yield. In this work, TiO2 nanorods (Cu/TiO2) modified by copper nanoparticles were prepared by a one‐step solvothermal method at low cost. The resultant Cu/TiO2 nanorods show excellent synergistic effect in the oxidation of methylene blue (MB) and the reduction of aqueous Cr(VI) under solar light irradiation. Mechanistic investigation suggests that the Cr(VI) species could effectively scavenge the electrons from MB in the presence of the as‐prepared photocatalyst, leading to the simultaneous removal of both pollutants. Being economically viable, environmentally sustainable, and highly efficient, the proposed photocatalyst holds promise for technologies involving simultaneous organic degradation and heavy metal removal in wastewater treatment.
View less >
View more >Because of its large bandgap, TiO2 can function only under UV light. TiO2 surface modification with noble metal nanoparticles can extend the light absorption from UV to visible light region and enhance the photocatalytic quantum yield. In this work, TiO2 nanorods (Cu/TiO2) modified by copper nanoparticles were prepared by a one‐step solvothermal method at low cost. The resultant Cu/TiO2 nanorods show excellent synergistic effect in the oxidation of methylene blue (MB) and the reduction of aqueous Cr(VI) under solar light irradiation. Mechanistic investigation suggests that the Cr(VI) species could effectively scavenge the electrons from MB in the presence of the as‐prepared photocatalyst, leading to the simultaneous removal of both pollutants. Being economically viable, environmentally sustainable, and highly efficient, the proposed photocatalyst holds promise for technologies involving simultaneous organic degradation and heavy metal removal in wastewater treatment.
View less >
Journal Title
Journal of the Chinese Chemical Society
Volume
65
Issue
6
Subject
Chemical sciences
Other chemical sciences not elsewhere classified