• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Efficient and Robust Cu/TiO2 Nanorod Photocatalysts for Simultaneous Removal of Cr(VI) and Methylene Blue under Solar Light

    Author(s)
    Guan, Haojian
    Zhou, Xiaosong
    Wen, Willian
    Jin, Bei
    Li, Jiajia
    Zhang, Shanqing
    Griffith University Author(s)
    Zhang, Shanqing
    Wen, William Y.
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Because of its large bandgap, TiO2 can function only under UV light. TiO2 surface modification with noble metal nanoparticles can extend the light absorption from UV to visible light region and enhance the photocatalytic quantum yield. In this work, TiO2 nanorods (Cu/TiO2) modified by copper nanoparticles were prepared by a one‐step solvothermal method at low cost. The resultant Cu/TiO2 nanorods show excellent synergistic effect in the oxidation of methylene blue (MB) and the reduction of aqueous Cr(VI) under solar light irradiation. Mechanistic investigation suggests that the Cr(VI) species could effectively scavenge the ...
    View more >
    Because of its large bandgap, TiO2 can function only under UV light. TiO2 surface modification with noble metal nanoparticles can extend the light absorption from UV to visible light region and enhance the photocatalytic quantum yield. In this work, TiO2 nanorods (Cu/TiO2) modified by copper nanoparticles were prepared by a one‐step solvothermal method at low cost. The resultant Cu/TiO2 nanorods show excellent synergistic effect in the oxidation of methylene blue (MB) and the reduction of aqueous Cr(VI) under solar light irradiation. Mechanistic investigation suggests that the Cr(VI) species could effectively scavenge the electrons from MB in the presence of the as‐prepared photocatalyst, leading to the simultaneous removal of both pollutants. Being economically viable, environmentally sustainable, and highly efficient, the proposed photocatalyst holds promise for technologies involving simultaneous organic degradation and heavy metal removal in wastewater treatment.
    View less >
    Journal Title
    Journal of the Chinese Chemical Society
    Volume
    65
    Issue
    6
    DOI
    https://doi.org/10.1002/jccs.201700337
    Subject
    Chemical sciences
    Other chemical sciences not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/380645
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander