Simultaneous H∞ stabilization for large-scale systems within distributed wireless networked control framework over fading channels

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Zhu, Yanfei
Yang, Fuwen
Li, Chuanjiang
Han, Qing-Long
Griffith University Author(s)
Year published
2018
Metadata
Show full item recordAbstract
In this paper, the simultaneous H∞ stabilization problem is investigated for a physically interconnected large-scale system which works in multiple operation modes. A distributed wireless networked control framework is introduced, in which the distributed dynamic output feedback controllers not only use the local measurements, but also receive the neighboring controllers’ broadcasts via wireless networks. The channel fading in wireless communications is described as the Rice fading model. Our focus is on the design of the distributed controllers such that the large-scale system is mean-square stable in each operation mode ...
View more >In this paper, the simultaneous H∞ stabilization problem is investigated for a physically interconnected large-scale system which works in multiple operation modes. A distributed wireless networked control framework is introduced, in which the distributed dynamic output feedback controllers not only use the local measurements, but also receive the neighboring controllers’ broadcasts via wireless networks. The channel fading in wireless communications is described as the Rice fading model. Our focus is on the design of the distributed controllers such that the large-scale system is mean-square stable in each operation mode and achieves a prescribed H∞ disturbance attenuation level. By employing the Lyapunov functional method and related stochastic analysis techniques, a sufficient condition on the existence of desired controllers is presented, and the parameterization of the controller gains is derived. Finally, a numerical example is utilized to illustrate the feasibility of the proposed scheme.
View less >
View more >In this paper, the simultaneous H∞ stabilization problem is investigated for a physically interconnected large-scale system which works in multiple operation modes. A distributed wireless networked control framework is introduced, in which the distributed dynamic output feedback controllers not only use the local measurements, but also receive the neighboring controllers’ broadcasts via wireless networks. The channel fading in wireless communications is described as the Rice fading model. Our focus is on the design of the distributed controllers such that the large-scale system is mean-square stable in each operation mode and achieves a prescribed H∞ disturbance attenuation level. By employing the Lyapunov functional method and related stochastic analysis techniques, a sufficient condition on the existence of desired controllers is presented, and the parameterization of the controller gains is derived. Finally, a numerical example is utilized to illustrate the feasibility of the proposed scheme.
View less >
Journal Title
Journal of the Franklin Institute
Volume
355
Issue
6
Copyright Statement
© 2018 The Franklin Institute. Published by Elsevier Ltd. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Subject
Applied mathematics
Electronics, sensors and digital hardware