• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Simultaneous H∞ stabilization for large-scale systems within distributed wireless networked control framework over fading channels

    Thumbnail
    View/Open
    ZhuPUB5550.pdf (1.527Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Zhu, Yanfei
    Yang, Fuwen
    Li, Chuanjiang
    Han, Qing-Long
    Griffith University Author(s)
    Yang, Fuwen
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    In this paper, the simultaneous H∞ stabilization problem is investigated for a physically interconnected large-scale system which works in multiple operation modes. A distributed wireless networked control framework is introduced, in which the distributed dynamic output feedback controllers not only use the local measurements, but also receive the neighboring controllers’ broadcasts via wireless networks. The channel fading in wireless communications is described as the Rice fading model. Our focus is on the design of the distributed controllers such that the large-scale system is mean-square stable in each operation mode ...
    View more >
    In this paper, the simultaneous H∞ stabilization problem is investigated for a physically interconnected large-scale system which works in multiple operation modes. A distributed wireless networked control framework is introduced, in which the distributed dynamic output feedback controllers not only use the local measurements, but also receive the neighboring controllers’ broadcasts via wireless networks. The channel fading in wireless communications is described as the Rice fading model. Our focus is on the design of the distributed controllers such that the large-scale system is mean-square stable in each operation mode and achieves a prescribed H∞ disturbance attenuation level. By employing the Lyapunov functional method and related stochastic analysis techniques, a sufficient condition on the existence of desired controllers is presented, and the parameterization of the controller gains is derived. Finally, a numerical example is utilized to illustrate the feasibility of the proposed scheme.
    View less >
    Journal Title
    Journal of the Franklin Institute
    Volume
    355
    Issue
    6
    DOI
    https://doi.org/10.1016/j.jfranklin.2018.02.016
    Copyright Statement
    © 2018 The Franklin Institute. Published by Elsevier Ltd. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Applied mathematics
    Electronics, sensors and digital hardware
    Publication URI
    http://hdl.handle.net/10072/380646
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander