• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • An intelligent chatter detection method based on EEMD and feature selection with multi-channel vibration signals

    Thumbnail
    View/Open
    ChenPUB5601.pdf (1.400Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Chen, Yun
    Li, Huaizhong
    Hou, Liang
    Wang, Jun
    Bu, Xiangjian
    Griffith University Author(s)
    Li, Huaizhong
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Chatter detection in metal machining is important to ensure good surface quality and avoid damage to the machine tool and workpiece. This paper presents an intelligent chatter detection method in a multi-channel monitoring system comprising vibration signals in three orthogonal directions. The method comprises three main steps: signal processing, feature extraction and selection, and classification. The ensemble empirical mode decomposition (EEMD) is used to decompose the raw signals into a set of intrinsic mode functions (IMFs) that represent different frequency bands. Features extracted from IMFs are ranked using the Fisher ...
    View more >
    Chatter detection in metal machining is important to ensure good surface quality and avoid damage to the machine tool and workpiece. This paper presents an intelligent chatter detection method in a multi-channel monitoring system comprising vibration signals in three orthogonal directions. The method comprises three main steps: signal processing, feature extraction and selection, and classification. The ensemble empirical mode decomposition (EEMD) is used to decompose the raw signals into a set of intrinsic mode functions (IMFs) that represent different frequency bands. Features extracted from IMFs are ranked using the Fisher discriminant ratio (FDR) to identify the informative IMFs, and those features with higher FDRs are selected and presented to a support vector machine for classification. Single-channel strategies and multi-channel strategies are compared in low immersion milling of titanium alloy Ti6Al4V. The results demonstrate that the two-channel (Ay, Az) strategies based on signal processing and feature ranking/selection give the best performance in classification of the stable and unstable tests.
    View less >
    Journal Title
    Measurement
    Volume
    127
    DOI
    https://doi.org/10.1016/j.measurement.2018.06.006
    Copyright Statement
    © 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Artificial intelligence
    Applied mathematics
    Mechanical engineering
    Mechanical engineering not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/380728
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander