• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Schwann cell lamellipodia regulate cell-cell interactions and phagocytosis

    Thumbnail
    View/Open
    VelasquezPUB5631.pdf (818.3Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Velasquez, Johana Tello
    St John, James A
    Nazareth, Lynn
    Ekberg, Jenny AK
    Griffith University Author(s)
    St John, James A.
    Ekberg, Jenny A.
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Lamellipodia in Schwann cells (SCs) are crucial for myelination, but their other biological functions remain largely uncharacterised. Two types of lamellipodia exist in SCs: axial lamellipodia at the outermost edge of the cell processes, and radial lamellipodia appearing peripherally along the entire cell. We have previously shown that radial lamellipodia on olfactory glia (olfactory ensheathing cells; OECs) promote cell-cell adhesion, contact-mediated migration and phagocytosis. Here we have investigated whether lamellipodia in SCs have similar roles. Using live-cell imaging, we show that the radial lamellipodia in SCs are ...
    View more >
    Lamellipodia in Schwann cells (SCs) are crucial for myelination, but their other biological functions remain largely uncharacterised. Two types of lamellipodia exist in SCs: axial lamellipodia at the outermost edge of the cell processes, and radial lamellipodia appearing peripherally along the entire cell. We have previously shown that radial lamellipodia on olfactory glia (olfactory ensheathing cells; OECs) promote cell-cell adhesion, contact-mediated migration and phagocytosis. Here we have investigated whether lamellipodia in SCs have similar roles. Using live-cell imaging, we show that the radial lamellipodia in SCs are highly motile, appear at multiple cellular sites and rapidly move in a wave-like manner. We found that axial and radial lamellipodia had strikingly different roles and are regulated by different intracellular pathways. Axial lamellipodia initiated interactions with other SCs and with neurons by contacting radial lamellipodia on SCs, and budding neurites/axons. Most SC-SC interactions resulted in repulsion, and, lamellipodial activity (unlike in OECs) did not promote contact-mediated migration. We show that lamellipodia are crucial for SC-mediated phagocytosis of both axonal debris and bacteria, and demonstrated that inhibition of lamellipodial activity by blocking the Rho/Rac pathways also inhibits phagocytosis. We also show that heregulin, which induces SC differentiation and maturation, alters lamellipodial behaviour but does not affect phagocytic activity. Overall, the results show that SC lamellipodia are important for cell interactions and phagocytosis.
    View less >
    Journal Title
    Molecular and Cellular Neuroscience
    Volume
    88
    DOI
    https://doi.org/10.1016/j.mcn.2018.01.001
    Copyright Statement
    © 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Neurosciences
    Neurosciences not elsewhere classified
    Psychology
    Cognitive and computational psychology
    Publication URI
    http://hdl.handle.net/10072/380783
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander