Show simple item record

dc.contributor.authorMcNamee, Antony P
dc.contributor.authorTansley, Geoff D
dc.contributor.authorSimmonds, Michael J
dc.date.accessioned2019-05-29T12:37:38Z
dc.date.available2019-05-29T12:37:38Z
dc.date.issued2018
dc.identifier.issn0026-2862
dc.identifier.doi10.1016/j.mvr.2018.05.008
dc.identifier.urihttp://hdl.handle.net/10072/380791
dc.description.abstractCirculation of blood depends, in part, on the ability of red blood cells (RBCs) to aggregate, disaggregate, and deform. The primary intrinsic disaggregating force of RBCs is derived from their electronegativity, which is largely determined by sialylated glycoproteins on the plasma membrane. Given supraphysiological shear exposure – even at levels below those which induce hemolysis – alters cell morphology, we hypothesized that exposure to supraphysiological and subhemolytic shear would cleave membrane-bound sialic acid, altering the electrochemical and physical properties of RBCs, and thus increase RBC aggregation. Isolated RBCs from healthy donors (n = 20) were suspended in polyvinylpyrrolidinone. Using a Poiseuille shearing system, RBC suspensions were exposed to 125 Pa for 1.5 s for three duty-cycles. Following the first and third shear duty-cycle, samples were assessed for: RBC aggregation; the ability of RBCs to aggregate independent of plasma (“aggregability”); disaggregation shear rate; membrane-bound sialic acid content, and; cell electrophoretic mobility. Initial shear exposure significantly increased RBC aggregation, aggregability, and the shear required for rouleaux dispersion. Sialic acid concentration significantly decreased on isolated RBC membranes ghosts, and increased in the supernatant following shear. Initial shear exposure decreased the electrophoretic mobility of RBCs, decreasing the electronegative charge from −15.78 ± 0.31 to −7.55 ± 0.21 mV. Three exposures to the shear duty-cycle did not further compound altered RBC measures. A single exposure to supraphysiological and subhemolytic shear significantly decreased the electrochemical charge of the RBC membrane, concurrently increasing cell aggregation/aggregability. The cascading implications of hyperaggregation appears to potentially explain the ischemia–associated complications commonly reported following mechanical circulatory support.
dc.description.peerreviewedYes
dc.languageEnglish
dc.language.isoeng
dc.publisherElsevier
dc.publisher.placeUnited States
dc.relation.ispartofpagefrom1
dc.relation.ispartofpageto7
dc.relation.ispartofjournalMicrovascular Research
dc.relation.ispartofvolume120
dc.subject.fieldofresearchClinical sciences
dc.subject.fieldofresearchClinical sciences not elsewhere classified
dc.subject.fieldofresearchcode3202
dc.subject.fieldofresearchcode320299
dc.titleSublethal mechanical trauma alters the electrochemical properties and increases aggregation of erythrocytes
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
dcterms.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.description.versionAccepted Manuscript (AM)
gro.facultyGriffith Health, School of Allied Health Sciences
gro.rights.copyright© 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
gro.hasfulltextFull Text
gro.griffith.authorSimmonds, Michael J.
gro.griffith.authorMcNamee, Antony
gro.griffith.authorTansley, Geoff


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record