• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Artificial destratification for reducing reservoir water evaporation: Is it effective?

    Thumbnail
    View/Open
    HelferPUB5679.pdf (887.6Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Helfer, F
    Andutta, FP
    Louzada, JA
    Zhang, H
    Lemckert, C
    Griffith University Author(s)
    Zhang, Hong
    Helfer, Fernanda
    Pinheiro Andutta, Fernando
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    The objective of the present study was to assess the effectiveness of artificial destratification by air‐bubble plumes in reducing evaporation from reservoirs. The model DYRESM was used to model the evaporation rates and thermodynamic behaviour of a temperate reservoir in Australia under a number of combinations of destratification designs and operating conditions, comprising various numbers of ports and air‐flow rates per port. The operating conditions involved continuous operation and various intermittent operating strategies. Three reservoir depths were considered, characterizing “shallow,” “medium” and “deep” reservoirs, ...
    View more >
    The objective of the present study was to assess the effectiveness of artificial destratification by air‐bubble plumes in reducing evaporation from reservoirs. The model DYRESM was used to model the evaporation rates and thermodynamic behaviour of a temperate reservoir in Australia under a number of combinations of destratification designs and operating conditions, comprising various numbers of ports and air‐flow rates per port. The operating conditions involved continuous operation and various intermittent operating strategies. Three reservoir depths were considered, characterizing “shallow,” “medium” and “deep” reservoirs, respectively. The present study results indicated that, assuming thermal stratification develops in a reservoir (the case for the “medium” and “deep” reservoirs), artificial destratification is able to reduce surface temperatures and evaporation rates. As a result of the larger volume of cold water at the lake bottom, deeper reservoirs can derive greater benefit from the use of these systems. Being raised to the water surface by the air injected through the destratification system, the cold water from the bottom will help reduce surface temperatures. Conversely, because of their typical homothermous regime, shallow lakes are unlikely to benefit from these systems, since these reservoirs lack an abundant cold water source at the bottom. Even so, however, the reductions in evaporation from deep reservoirs are only modest, with the maximum reduction being only 2.9% for a deep lake (16.5 m) using an energy‐intensive destratification system. Based on the present study, it was concluded that using destratification systems for reducing reservoir evaporation was not warranted because of the modest water savings achieved.
    View less >
    Journal Title
    Lakes and Reservoirs
    DOI
    https://doi.org/10.1111/lre.12241
    Copyright Statement
    © 2018 Wiley Publishing Asia Pty Ltd. This is the peer reviewed version of the following article: Artificial destratification for reducing reservoir water evaporation: Is it effective?, Lakes & Reservoirs: Research and Management, 2018, which has been published in final form at https://doi.org/10.1111/lre.12241. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving (http://olabout.wiley.com/WileyCDA/Section/id-828039.html)
    Note
    This publication has been entered into Griffith Research Online as an Advanced Online Version.
    Subject
    Natural resource management
    Environmental engineering not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/380874
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander