Competitive adsorption of heavy metal ions (Pb2+, Cu2+, and Ni2+) onto date seed biochar: batch and fixed bed experiments
Author(s)
Mahdi, Zainab
Yu, Qiming Jimmy
El Hanandeh, Ali
Year published
2019
Metadata
Show full item recordAbstract
In a multicomponent systems, the adsorption of Pb2+, Cu2+, and Ni2+ by date seed biochar exhibited competitive behavior. Compared to single component systems, the adsorption capacities of each ion were reduced by 48–75% in both batch and column experiments. Surface complexation with carboxyl and hydroxyl functional groups played a major role in the removal mechanism. Ion exchange mechanism accounted for 37–40% of the total adsorption compared to 57–72% in single component systems. Modified Langmuir isotherm best described the systems. Adsorption capacities and selectivity follow the order: Pb2+> Cu2+> Ni2+. Multi-stage ...
View more >In a multicomponent systems, the adsorption of Pb2+, Cu2+, and Ni2+ by date seed biochar exhibited competitive behavior. Compared to single component systems, the adsorption capacities of each ion were reduced by 48–75% in both batch and column experiments. Surface complexation with carboxyl and hydroxyl functional groups played a major role in the removal mechanism. Ion exchange mechanism accounted for 37–40% of the total adsorption compared to 57–72% in single component systems. Modified Langmuir isotherm best described the systems. Adsorption capacities and selectivity follow the order: Pb2+> Cu2+> Ni2+. Multi-stage sequences system is recommended to avoid premature exhaustion of biochar.
View less >
View more >In a multicomponent systems, the adsorption of Pb2+, Cu2+, and Ni2+ by date seed biochar exhibited competitive behavior. Compared to single component systems, the adsorption capacities of each ion were reduced by 48–75% in both batch and column experiments. Surface complexation with carboxyl and hydroxyl functional groups played a major role in the removal mechanism. Ion exchange mechanism accounted for 37–40% of the total adsorption compared to 57–72% in single component systems. Modified Langmuir isotherm best described the systems. Adsorption capacities and selectivity follow the order: Pb2+> Cu2+> Ni2+. Multi-stage sequences system is recommended to avoid premature exhaustion of biochar.
View less >
Journal Title
Separation Science and Technology
Note
This publication has been entered into Griffith Research Online as an Advanced Online Version.
Subject
Analytical chemistry
Chemical engineering
Environmental engineering
Environmentally sustainable engineering
Global and planetary environmental engineering