• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Numerical investigation of dynamic soil response around a submerged rubble mound breakwater

    Author(s)
    Zhao, HY
    Liang, ZD
    Jeng, D-S
    Zhu, JF
    Guo, Z
    Chen, WY
    Griffith University Author(s)
    Jeng, Dong-Sheng
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    A better understanding of physical process of the fluid-seabed-structure interaction (FSSI) is beneficial for engineers involved in the design of marine infrastructures. Most previous studies for the problem of FSSI have considered wave-only conditions, despite the co-existence of wave and current in the real ocean environment. Unlike the previous studies, currents are included in the present study for the numerical modelling of FSSI, using an integrated FVM-FEM scheme, in which the VARANS equation is used to simulate fluid field, while Biot's poro-elastic model is used for porous flow in a seabed. Numerical examples show ...
    View more >
    A better understanding of physical process of the fluid-seabed-structure interaction (FSSI) is beneficial for engineers involved in the design of marine infrastructures. Most previous studies for the problem of FSSI have considered wave-only conditions, despite the co-existence of wave and current in the real ocean environment. Unlike the previous studies, currents are included in the present study for the numerical modelling of FSSI, using an integrated FVM-FEM scheme, in which the VARANS equation is used to simulate fluid field, while Biot's poro-elastic model is used for porous flow in a seabed. Numerical examples show the important influences of currents on the local hydrodynamic process and the resulting dynamics of seabed foundation around a submerged rubble mound breakwater. The structure is relatively stable in the presence of counter-current waves, whereas the co-current waves would significantly compromise the instability of structure due to potential of shear failure and liquefaction in its sandy seabed foundation.
    View less >
    Journal Title
    Ocean Engineering
    Volume
    156
    DOI
    https://doi.org/10.1016/j.oceaneng.2018.03.005
    Subject
    Oceanography
    Civil engineering
    Maritime engineering
    Maritime engineering not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/380983
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander