• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Optimizing preseason training loads in Australian football

    Thumbnail
    View/Open
    CareyPUB5717.pdf (876.1Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Carey, David
    Crow, Justin
    Ong, Kok-Leong
    Blanch, Peter
    Morris, Meg
    Dascombe, Ben
    Crossley, Kay
    Griffith University Author(s)
    Blanch, Peter D.
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Purpose: To investigate whether preseason training plans for Australian football can be computer generated using current training-load guidelines to optimize injury-risk reduction and performance improvement. Methods: A constrained optimization problem was defined for daily total and sprint distance, using the preseason schedule of an elite Australian football team as a template. Maximizing total training volume and maximizing Banister-model-projected performance were both considered optimization objectives. Cumulative workload and acute:chronic workload-ratio constraints were placed on training programs to reflect current ...
    View more >
    Purpose: To investigate whether preseason training plans for Australian football can be computer generated using current training-load guidelines to optimize injury-risk reduction and performance improvement. Methods: A constrained optimization problem was defined for daily total and sprint distance, using the preseason schedule of an elite Australian football team as a template. Maximizing total training volume and maximizing Banister-model-projected performance were both considered optimization objectives. Cumulative workload and acute:chronic workload-ratio constraints were placed on training programs to reflect current guidelines on relative and absolute training loads for injury-risk reduction. Optimization software was then used to generate preseason training plans. Results: The optimization framework was able to generate training plans that satisfied relative and absolute workload constraints. Increasing the off-season chronic training loads enabled the optimization algorithm to prescribe higher amounts of “safe” training and attain higher projected performance levels. Simulations showed that using a Banister-model objective led to plans that included a taper in training load prior to competition to minimize fatigue and maximize projected performance. In contrast, when the objective was to maximize total training volume, more frequent training was prescribed to accumulate as much load as possible. Conclusions: Feasible training plans that maximize projected performance and satisfy injury-risk constraints can be automatically generated by an optimization problem for Australian football. The optimization methods allow for individualized training-plan design and the ability to adapt to changing training objectives and different training-load metrics.
    View less >
    Journal Title
    International Journal of Sports Physiology and Performance
    Volume
    13
    Issue
    2
    DOI
    https://doi.org/10.1123/ijspp.2016-0695
    Copyright Statement
    © 2018 Human Kinetics. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
    Subject
    Human Movement and Sports Science not elsewhere classified
    Human Movement and Sports Sciences
    Medical Physiology
    Psychology
    Publication URI
    http://hdl.handle.net/10072/381034
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander