• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • The relationship between variables in wearable microtechnology devices and cricket fast-bowling intensity

    Thumbnail
    View/Open
    McNamaraPUB5716.pdf (454.9Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    McNamara, Dean J
    Gabbett, Tim J
    Blanch, Peter
    Kelly, Luke
    Griffith University Author(s)
    Blanch, Peter D.
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    To date, the monitoring of fast-bowling workloads across training and competition environments has been limited to counting total balls bowled. However, bowling at faster velocities is likely to require greater effort while also placing greater load on the bowler. This study investigated the relationship between prescribed effort and microtechnology outputs in fast bowlers to ascertain whether the technology could provide a more refined measure of workload. Twelve high-performing fast bowlers (mean ± SD age 20.3 ± 2.2 y) participated in the study. Each bowler bowled 6 balls at prescribed bowling intensities of 60%, 70%, 85%, ...
    View more >
    To date, the monitoring of fast-bowling workloads across training and competition environments has been limited to counting total balls bowled. However, bowling at faster velocities is likely to require greater effort while also placing greater load on the bowler. This study investigated the relationship between prescribed effort and microtechnology outputs in fast bowlers to ascertain whether the technology could provide a more refined measure of workload. Twelve high-performing fast bowlers (mean ± SD age 20.3 ± 2.2 y) participated in the study. Each bowler bowled 6 balls at prescribed bowling intensities of 60%, 70%, 85%, and 100%. The relationships between microtechnology outputs, prescribed intensity, and ball velocity were determined using polynomial regression. Very large relationships were observed between prescribed effort and ball velocity for peak PlayerLoad™ (R = .83 ± .19 and .82 ± .20). The PlayerLoad across lower ranges of prescribed effort exhibited a higher coefficient of variation (CV) (60% = 19.0% [17.0–23.0%]), while the CV at higher ranges of prescribed effort was lower (100% = 7.3% [6.4–8.5%]). Routinely used wearable microtechnology devices offer opportunities to examine workload and intensity in cricket fast bowlers outside the normal metrics reported. They offer a useful tool for prescribing and monitoring bowling intensity and workload in elite fast bowlers.
    View less >
    Journal Title
    International Journal of Sports Physiology and Performance
    Volume
    13
    Issue
    2
    DOI
    https://doi.org/10.1123/ijspp.2016-0540
    Copyright Statement
    © 2018 Human Kinetics. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
    Subject
    Sports science and exercise
    Sports science and exercise not elsewhere classified
    Medical physiology
    Psychology
    Publication URI
    http://hdl.handle.net/10072/381035
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander