• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A parametric study of phase change material behaviour when used with night ventilation in different climatic zones

    Author(s)
    Solgi, Ebrahim
    Hamedani, Zahra
    Fernando, Ruwan
    Kari, Behrouz Mohammad
    Skates, Henry
    Griffith University Author(s)
    Skates, Henry
    Fernando, Ruwan A.
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Night ventilation (NV) is a productive passive cooling technique which demonstrates a high potential for reducing cooling loads and improving thermal comfort; however, its efficiency is highly contingent upon such factors as thermal energy storage. In the current building industry where utilizing lightweight structures is of paramount importance, the usage of Phase Change Materials (PCMs) as efficient lightweight thermal energy storage for NV is becoming rapidly prevalent. Although the effects of the independent variables of NV and PCMs are well-known, their interrelationship has not been clearly established. This study ...
    View more >
    Night ventilation (NV) is a productive passive cooling technique which demonstrates a high potential for reducing cooling loads and improving thermal comfort; however, its efficiency is highly contingent upon such factors as thermal energy storage. In the current building industry where utilizing lightweight structures is of paramount importance, the usage of Phase Change Materials (PCMs) as efficient lightweight thermal energy storage for NV is becoming rapidly prevalent. Although the effects of the independent variables of NV and PCMs are well-known, their interrelationship has not been clearly established. This study therefore set out to explore the correlation between PCM quantity and transition temperatures, as well as NV airflow and delta temperature, thermal insulation and the resulting energy saving. To do so, a model, validated utilizing a full-scale calorimeter, was employed for numerical simulations of three different climates. It was found that in tropical climates, coupling NV with PCMs was non-effective. Nevertheless, in sub-tropical and hot-dry climates, cooling thermostat set-points, as well as thermal insulation play a key role in defining the optimal PCM temperature utilized for NV. The optimal transitional temperature, however, is not dependent on the PCM thicknesses, but thickening PCMs raises energy saving. The use of well-insulated envelopes increases NV efficiency and stabilizes the optimal PCM transition temperature, defined as 1 °C lower than the cooling set-point temperature. It is also concluded that the importance of thermal insulation in raising NV efficiency is greater than PCM volume. Furthermore, low delta temperature and high airflow result in increasing NV efficiency; however, these phenomena have no effect on the optimal PCM meting temperature.
    View less >
    Journal Title
    Building and Environment
    Volume
    147
    DOI
    https://doi.org/10.1016/j.buildenv.2018.10.031
    Subject
    Architecture
    Building
    Building information modelling and management
    Materials engineering
    Publication URI
    http://hdl.handle.net/10072/381075
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander