• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Bayesian modeling predicts age and sex are not required for accurate stature estimation from femoral length

    Thumbnail
    View/Open
    ReynoldsPUB5734.pdf (1.113Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Reynolds, Mikaela S
    MacGregor, Donna M
    Alston-Knox, Clair L
    Meredith, Matthew
    Barry, Mark D
    Schmutz, Beat
    Gregory, Laura S
    Griffith University Author(s)
    Alston-Knox, Clair L.
    MacGregor, Donna M.
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Despite the recognized flaws in applying traditional stature estimation equations such as those of Trotter and Gleser (1952) [5] to a contemporary population, there are currently no available alternatives for stature estimation in Australia that address these limitations. Post mortem computed tomography (PMCT) DICOM scans of the left and right femora were acquired from 76 Australian deceased individuals aged 17–76 years for metric analysis. Femoral bicondylar length, femoral epicondylar breadth and anterior–posterior (AP) diameter, medial-lateral (ML) diameter, circumference and cortical area at the femoral midshaft were ...
    View more >
    Despite the recognized flaws in applying traditional stature estimation equations such as those of Trotter and Gleser (1952) [5] to a contemporary population, there are currently no available alternatives for stature estimation in Australia that address these limitations. Post mortem computed tomography (PMCT) DICOM scans of the left and right femora were acquired from 76 Australian deceased individuals aged 17–76 years for metric analysis. Femoral bicondylar length, femoral epicondylar breadth and anterior–posterior (AP) diameter, medial-lateral (ML) diameter, circumference and cortical area at the femoral midshaft were measured on three-dimensional (3D) models to build statistical models for estimating stature. In addition, Australian individuals aged 16–63 years (n = 111) were measured in standing and supine positions to aid in the adjustment of supine stature of deceased individuals utilized in this study to standing stature. The results of this preliminary evaluation strongly indicate that the optimal model for estimating stature includes bicondylar femoral length and epicondylar breadth, that the effect of sex as an independent variable is very low, and there is limited practical benefit in including age in the estimation of stature. Our study indicates that the Australian population sampled represents a small yet significant shift in stature from the original Trotter and Gleser sample. Additionally, in the case of fragmentary remains, it was found that epicondylar breadth and AP diameter had the highest probability of accurate stature estimation in the absence of bicondylar femoral length. As stature forms a significant component of a biological profile and therefore aids in the personal identification of human remains, it is important that forensic anthropologists utilize the most accurate methodologies available. Stature estimation of Australian individuals is therefore achieved with higher accuracy through utilizing the femoral equations proposed in this study.
    View less >
    Journal Title
    Forensic Science International
    Volume
    289
    DOI
    https://doi.org/10.1016/j.forsciint.2018.04.008
    Copyright Statement
    © 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Forensic biology
    Publication URI
    http://hdl.handle.net/10072/381088
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander