• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A new method for dating tree-rings in trees with faint, indeterminate ring boundaries using the Itrax core scanner

    Thumbnail
    View/Open
    HainesPUB5752.pdf (558.6Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Haines, Heather A
    Gadd, Patricia S
    Palmer, Jonathan
    Olley, Jon M
    Hua, Quan
    Heijnis, Henk
    Griffith University Author(s)
    Olley, Jon M.
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Eastern Australia is known to experience multi-decadal periods of flood and drought. Subtropical Southeast Queensland is one region where these devastating extreme events occur regularly yet a full understanding of their frequency and magnitude cannot be determined from the short duration (<100 years) climate data available for the region. Tree-rings are a potential source of long-term (>100 years) proxy rainfall information but locating suitable forest stands is difficult due to extensive land clearing by European settlers. Another factor deterring the use of trees as proxy data sources is that longer-lived species frequently ...
    View more >
    Eastern Australia is known to experience multi-decadal periods of flood and drought. Subtropical Southeast Queensland is one region where these devastating extreme events occur regularly yet a full understanding of their frequency and magnitude cannot be determined from the short duration (<100 years) climate data available for the region. Tree-rings are a potential source of long-term (>100 years) proxy rainfall information but locating suitable forest stands is difficult due to extensive land clearing by European settlers. Another factor deterring the use of trees as proxy data sources is that longer-lived species frequently contain anomalous rings, particularly faint rings, hindering their use for paleoclimate study. Here we present a method which overcomes the problems of identifying faint ring boundaries in trees by using X-radiographs and density patterns developed on the Itrax core scanner. We analysed 39 tree cores from 20 trees at a site in D'Aguilar National Park located just north of Brisbane city in Queensland, Australia. Each core had a 2 mm lath cut perpendicular to its rings which was then passed through an Itrax core scanner. The tree-ring boundaries were identified on the image by both the visual features in the radiograph and the change in density observed between rings. From this information we developed a tree-ring chronology. The chronology was checked using bomb-pulse radiocarbon dating on five trees to confirm the annual nature of the rings, and to correct dating errors in the chronology due to false rings which are common in this species. Climate response function analysis showed Austral annual rainfall (June–May) was the dominant environmental variable driving tree growth. Finally, a 69-year statistically significant reconstruction of Brisbane precipitation was produced showing that this non-destructive Itrax ring identification technique together with age validation by bomb-pulse radiocarbon dating is useful for dendroclimatological studies of trees with faint ring boundaries.
    View less >
    Journal Title
    Palaeogeography, Palaeoclimatology, Palaeoecology
    Volume
    497
    DOI
    https://doi.org/10.1016/j.palaeo.2018.02.025
    Copyright Statement
    © 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Geology
    Ecology
    Palaeoecology
    Evolutionary biology
    Publication URI
    http://hdl.handle.net/10072/381114
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander