• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Quantum heat engine operating between thermal and spin reservoirs

    View/Open
    WrightPUB5759.pdf (1.459Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Wright, Jackson SST
    Gould, Tim
    Carvalho, Andre RR
    Bedkihal, Salil
    Vaccaro, Joan A
    Griffith University Author(s)
    Vaccaro, Joan A.
    Gould, Tim J.
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Landauer's erasure principle is a cornerstone of thermodynamics and information theory [R. Landauer, IBM J. Res. Dev. 5, 183 (1961)]. According to this principle, erasing information incurs a minimum energy cost. Recently, Vaccaro and Barnett [J. A. Vaccaro and S. M. Barnett, Proc. R. Soc. A 467, 1770 (2011)] explored information erasure in the context of multiple conserved quantities and showed that the erasure cost can be solely in terms of spin angular momentum. As Landauer's erasure principle plays a fundamental role in heat engines, their result considerably widens the possible configurations that heat engines can have. ...
    View more >
    Landauer's erasure principle is a cornerstone of thermodynamics and information theory [R. Landauer, IBM J. Res. Dev. 5, 183 (1961)]. According to this principle, erasing information incurs a minimum energy cost. Recently, Vaccaro and Barnett [J. A. Vaccaro and S. M. Barnett, Proc. R. Soc. A 467, 1770 (2011)] explored information erasure in the context of multiple conserved quantities and showed that the erasure cost can be solely in terms of spin angular momentum. As Landauer's erasure principle plays a fundamental role in heat engines, their result considerably widens the possible configurations that heat engines can have. Motivated by this, we propose here an optical heat engine that operates under a single thermal reservoir and a spin angular momentum reservoir coupled to a three-level system with two energy degenerate ground states. The proposed heat engine operates without producing waste heat and goes beyond the traditional Carnot engine where the working fluid is subjected to two thermal baths at different temperatures.
    View less >
    Journal Title
    Physical Review A
    Volume
    97
    Issue
    5
    DOI
    https://doi.org/10.1103/PhysRevA.97.052104
    Copyright Statement
    © 2018 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Atomic, molecular and optical physics not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/381121
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander