• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Additive Manufacturing of Cobalt-Based Dental Alloys: Analysis of Microstructure and Physicomechanical Properties

    Thumbnail
    View/Open
    HitzlerPUB5816.pdf (3.324Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Hitzler, Leonhard
    Alifui-Segbaya, Frank
    Williams, Philipp
    Heine, Burkhard
    Heitzmann, Michael
    Hall, Wayne
    Merkel, Markus
    Oechsner, Andreas
    Griffith University Author(s)
    Hall, Wayne
    Alifui-Segbaya, Frank
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    The limitations of investment casting of cobalt-based alloys are claimed to be less problematic with significant improvements in metal additive manufacturing by selective laser melting (SLM). Despite these advantages, the metallic devices are likely to display mechanical anisotropy in relation to build orientations, which could consequently affect their performance “in vivo.” In addition, there is inconclusive evidence concerning the requisite composition and postprocessing steps (e.g., heat treatment to relieve stress) that must be completed prior to using the devices. In the current paper, we evaluate the microstructure ...
    View more >
    The limitations of investment casting of cobalt-based alloys are claimed to be less problematic with significant improvements in metal additive manufacturing by selective laser melting (SLM). Despite these advantages, the metallic devices are likely to display mechanical anisotropy in relation to build orientations, which could consequently affect their performance “in vivo.” In addition, there is inconclusive evidence concerning the requisite composition and postprocessing steps (e.g., heat treatment to relieve stress) that must be completed prior to using the devices. In the current paper, we evaluate the microstructure of ternary cobalt-chromium-molybdenum (Co-Cr-Mo) and cobalt-chromium-tungsten (Co-Cr-W) alloys built with direct metal printing and LaserCUSING SLM systems, respectively, at 0°, 30°, 60°, and 90° inclinations (Φ) in as-built (AB) and heat-treated (HT) conditions. The study also examines the tensile properties (Young’s modulus, E; yield strength, RP0.2; elongation at failure, At; and ultimate tensile strength, Rm), relative density (RD), and microhardness (HV5) and macrohardness (HV20) as relevant physicomechanical properties of the alloys. Data obtained indicate improved tensile properties and HV values after a short and cost-effective heat-treatment cycle of Co-Cr-Mo alloys; however, the process did not homogenize the microstructure of the alloy. Annealing heat treatment of Co-Cr-W led to significant isotropic characteristics with increased E and At (except for Φ = 90°) in contrast to decreased RP0.2, Rm, and HV values, compared to the AB form. Similarly, the interlaced weld-bead structures in AB Co-Cr-W were removed during heat treatment, which led to a complete recrystallization of the microstructure. Both alloys exhibited defect-free microstructures with RD exceeding 99.5%.
    View less >
    Journal Title
    Advances in Materials Science and Engineering
    Volume
    2018
    DOI
    https://doi.org/10.1155/2018/8213023
    Copyright Statement
    Copyright © 2018 Leonhard Hitzler et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Subject
    Dentistry
    Materials engineering
    Publication URI
    http://hdl.handle.net/10072/381249
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander