Improving succinylation prediction accuracy by incorporating the secondary structure via helix, strand and coil, and evolutionary information from profile bigrams

View/ Open
File version
Version of Record (VoR)
Author(s)
Dehzangi, Abdollah
Lopez, Yosvany
Lal, Sunil Pranit
Taherzadeh, Ghazaleh
Sattar, Abdul
Tsunoda, Tatsuhiko
Sharma, Alok
Griffith University Author(s)
Year published
2018
Metadata
Show full item recordAbstract
Post-translational modification refers to the biological mechanism involved in the enzymatic modification of proteins after being translated in the ribosome. This mechanism comprises a wide range of structural modifications, which bring dramatic variations to the biological function of proteins. One of the recently discovered modifications is succinylation. Although succinylation can be detected through mass spectrometry, its current experimental detection turns out to be a timely process unable to meet the exponential growth of sequenced proteins. Therefore, the implementation of fast and accurate computational methods has ...
View more >Post-translational modification refers to the biological mechanism involved in the enzymatic modification of proteins after being translated in the ribosome. This mechanism comprises a wide range of structural modifications, which bring dramatic variations to the biological function of proteins. One of the recently discovered modifications is succinylation. Although succinylation can be detected through mass spectrometry, its current experimental detection turns out to be a timely process unable to meet the exponential growth of sequenced proteins. Therefore, the implementation of fast and accurate computational methods has emerged as a feasible solution. This paper proposes a novel classification approach, which effectively incorporates the secondary structure and evolutionary information of proteins through profile bigrams for succinylation prediction. The proposed predictor, abbreviated as SSEvol-Suc, made use of the above features for training an AdaBoost classifier and consequently predicting succinylated lysine residues. When SSEvol-Suc was compared with four benchmark predictors, it outperformed them in metrics such as sensitivity (0.909), accuracy (0.875) and Matthews correlation coefficient (0.75).
View less >
View more >Post-translational modification refers to the biological mechanism involved in the enzymatic modification of proteins after being translated in the ribosome. This mechanism comprises a wide range of structural modifications, which bring dramatic variations to the biological function of proteins. One of the recently discovered modifications is succinylation. Although succinylation can be detected through mass spectrometry, its current experimental detection turns out to be a timely process unable to meet the exponential growth of sequenced proteins. Therefore, the implementation of fast and accurate computational methods has emerged as a feasible solution. This paper proposes a novel classification approach, which effectively incorporates the secondary structure and evolutionary information of proteins through profile bigrams for succinylation prediction. The proposed predictor, abbreviated as SSEvol-Suc, made use of the above features for training an AdaBoost classifier and consequently predicting succinylated lysine residues. When SSEvol-Suc was compared with four benchmark predictors, it outperformed them in metrics such as sensitivity (0.909), accuracy (0.875) and Matthews correlation coefficient (0.75).
View less >
Journal Title
PLoS One
Volume
13
Issue
2
Copyright Statement
© 2018 Dehzangi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Subject
Microbiology not elsewhere classified