• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Position-specific 13C/12C analysis of amino acid carboxyl groups - automated flow-injection analysis based on reaction with ninhydrin

    Thumbnail
    View/Open
    FryPUB5869.pdf (927.1Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Fry, Brian
    Carter, James F
    Yamada, Keita
    Yoshida, Naohiro
    Juchelka, Dieter
    Griffith University Author(s)
    Fry, Brian D.
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Rationale: The fundamental level of stable isotopic knowledge lies at specific atomic positions within molecules but existing methods of analysis require lengthy off‐line preparation to reveal this information. An automated position‐specific isotope analysis (PSIA) method is presented to determine the stable carbon isotopic compositions of the carboxyl groups of amino acids (δ13CCARBOXYL values). This automation makes PSIA measurements easier and routine. Methods: An existing high‐performance liquid chromatography (HPLC) gas handling interface/stable isotope ratio mass spectrometry system was modified by the addition of ...
    View more >
    Rationale: The fundamental level of stable isotopic knowledge lies at specific atomic positions within molecules but existing methods of analysis require lengthy off‐line preparation to reveal this information. An automated position‐specific isotope analysis (PSIA) method is presented to determine the stable carbon isotopic compositions of the carboxyl groups of amino acids (δ13CCARBOXYL values). This automation makes PSIA measurements easier and routine. Methods: An existing high‐performance liquid chromatography (HPLC) gas handling interface/stable isotope ratio mass spectrometry system was modified by the addition of a post‐column derivatisation unit between the HPLC system and the interface. The post‐column reaction was optimised to yield CO2 from the carboxyl groups of amino acids by reaction with ninhydrin. Results: The methodology described produced δ13CCARBOXYL values with typical standard deviations below ±0.1 ‰ and consistent differences (Δ13CCARBOXYL values) between amino acids over a 1‐year period. First estimates are presented for the δ13CCARBOXYL values of a number of internationally available amino acid reference materials. Conclusions: The PSIA methodology described provides a further dimension to the stable isotopic characterisation of amino acids at a more detailed level than the bulk or averaged whole‐molecule level. When combined with on‐line chromatographic separation or off‐line fraction collection of protein hydrolysates the technique will offer an automated and routine way to study position‐specific carboxyl carbon isotope information for amino acids, enabling more refined isotopic studies of carbon uptake and metabolism.
    View less >
    Journal Title
    Rapid Communications in Mass Spectrometry
    Volume
    32
    DOI
    https://doi.org/10.1002/rcm.8126
    Copyright Statement
    © 2018 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
    Subject
    Chemical sciences
    Other chemical sciences not elsewhere classified
    Earth sciences
    Biological sciences
    Publication URI
    http://hdl.handle.net/10072/381344
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander