• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Technical, financial, economic and environmental pre-feasibility study of geothermal power plants by RETScreen - Ecuador's case study

    Thumbnail
    View/Open
    KaparajuPUB7007.pdf (736.4Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Moya, D
    Paredes, J
    Kaparaju, P
    Griffith University Author(s)
    Kaparaju, Prasad
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    A technical, financial, economic and environmental analysis of geothermal power plant developments in the Ecuadorian context was analysed by RETScreen-International Geothermal Project Model. Three different scenarios were considered. Scenario I and II considered incentives of 132.1 USD/MWh for electricity generation and grants of 3 million USD. Scenario III considered the geothermal project with an electricity export price of 49.3 USD/MWh. Scenario III was further divided into IIIA and IIIB case studies. Scenario IIIA considered a 3 million USD grant while Scenario IIIB considered an income of 8.9 USD/MWh for selling heat ...
    View more >
    A technical, financial, economic and environmental analysis of geothermal power plant developments in the Ecuadorian context was analysed by RETScreen-International Geothermal Project Model. Three different scenarios were considered. Scenario I and II considered incentives of 132.1 USD/MWh for electricity generation and grants of 3 million USD. Scenario III considered the geothermal project with an electricity export price of 49.3 USD/MWh. Scenario III was further divided into IIIA and IIIB case studies. Scenario IIIA considered a 3 million USD grant while Scenario IIIB considered an income of 8.9 USD/MWh for selling heat in direct applications. Modelling results showed that binary power cycle was the most suitable geothermal technology to produce electricity along with aquaculture and greenhouse heating for direct use applications in all scenarios. Financial analyses showed that the debt payment would be 5.36 million USD/year under in Scenario I and III. The corresponding values for Scenario II was 7.06 million USD/year. Net Present Value was positive for all studied scenarios except for Scenario IIIA. The equity paybacks were 3.2, 3.7, 16 and 5.6 years for Scenario I, Scenario II, Scenario IIIA and Scenario IIIB, respectively. Overall, Scenario II was identified as the most feasible project due to positive NPV with short payback period. Interestingly, Scenario IIIB could become financially attractive by selling heat for direct applications. Direct applications, public incentives and clean funding mechanisms are essential for the success of geothermal energy projects in the Ecuadorian context. The total initial investment for a 22 MW geothermal power plant was 114.3 million USD (at 2017 costs). Economic analysis showed an annual savings of 24.3 million USD by avoiding fossil fuel electricity generation. More than 184,000 tCO2 eq. could be avoided annually. Thus, greenhouse emissions avoided by using geothermal energy would bring out environmental benefits and improve the socio-economic benefits in communities.
    View less >
    Journal Title
    Renewable and Sustainable Energy Reviews
    Volume
    92
    DOI
    https://doi.org/10.1016/j.rser.2018.04.027
    Copyright Statement
    © 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Engineering
    Other engineering not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/381358
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander