IG-Tree: an efficient spatial keyword index for planning best path queries on road networks

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Haryanto, Anasthasia Agnes
Islam, Md Saiful
Taniar, David
Cheema, Muhammad Aamir
Griffith University Author(s)
Year published
2019
Metadata
Show full item recordAbstract
Due to the popularity of Spatial Databases, many search engine providers have started to expand their text searching capability to include geographical information. Because of this reason, many new queries on spatial objects affiliated with textual information, known as the Spatial Keyword Queries, have taken significant research interest in the past years. Unfortunately, most of existing works on Spatial Keyword Queries only focus on objects retrieval. There is barely any work on route planning queries, even though route planning is often needed in our daily life. In this research, we propose the Best Path Query, which we ...
View more >Due to the popularity of Spatial Databases, many search engine providers have started to expand their text searching capability to include geographical information. Because of this reason, many new queries on spatial objects affiliated with textual information, known as the Spatial Keyword Queries, have taken significant research interest in the past years. Unfortunately, most of existing works on Spatial Keyword Queries only focus on objects retrieval. There is barely any work on route planning queries, even though route planning is often needed in our daily life. In this research, we propose the Best Path Query, which we find the best optimum route from two different spatial locations that visits or avoids the objects that are specified by the textual data given by the user. We show that Best Path Query is an NP-Hard problem. We propose an efficient indexing technique, namely IG-Tree, and three different algorithms with different trade-offs to process the Best Path Queries on Road Networks. Our extensive experimental study demonstrates the efficiency and accuracy of our proposed approach.
View less >
View more >Due to the popularity of Spatial Databases, many search engine providers have started to expand their text searching capability to include geographical information. Because of this reason, many new queries on spatial objects affiliated with textual information, known as the Spatial Keyword Queries, have taken significant research interest in the past years. Unfortunately, most of existing works on Spatial Keyword Queries only focus on objects retrieval. There is barely any work on route planning queries, even though route planning is often needed in our daily life. In this research, we propose the Best Path Query, which we find the best optimum route from two different spatial locations that visits or avoids the objects that are specified by the textual data given by the user. We show that Best Path Query is an NP-Hard problem. We propose an efficient indexing technique, namely IG-Tree, and three different algorithms with different trade-offs to process the Best Path Queries on Road Networks. Our extensive experimental study demonstrates the efficiency and accuracy of our proposed approach.
View less >
Journal Title
World Wide Web
Copyright Statement
© 2018 Springer Netherlands. This is an electronic version of an article published in World Wide Web, pp 1–41, 2018. World Wide Web is available online at: http://link.springer.com/ with the open URL of your article.
Note
This publication has been entered into Griffith Research Online as an Advanced Online Version.
Subject
Data management and data science
Data structures and algorithms
Distributed computing and systems software
Information systems
Database systems