Decay of sewage-associated bacterial communities in fresh and marine environmental waters and sediment
Author(s)
Ahmed, Warish
Staley, Christopher
Kaiser, Thomas
Sadowsky, Michael J
Kozak, Sonya
Beale, David
Simpson, Stuart
Griffith University Author(s)
Year published
2018
Metadata
Show full item recordAbstract
Understanding the microbial quality of recreational waters is critical to effectively managing human health risks. In recent years, the development of new molecular methods has provided scientists with alternatives to the use of culture-based fecal indicator methods for investigating sewage contamination in recreational waters. Before these methods can be formalized into guidelines, however, we must investigate their utility, including strengths and weaknesses in different environmental media. In this study, we investigated the decay of sewage-associated bacterial communities in water and sediment from three recreational ...
View more >Understanding the microbial quality of recreational waters is critical to effectively managing human health risks. In recent years, the development of new molecular methods has provided scientists with alternatives to the use of culture-based fecal indicator methods for investigating sewage contamination in recreational waters. Before these methods can be formalized into guidelines, however, we must investigate their utility, including strengths and weaknesses in different environmental media. In this study, we investigated the decay of sewage-associated bacterial communities in water and sediment from three recreational areas in Southeast Queensland, Australia. Outdoor mesocosms with water and sediment samples from two marine and one freshwater sites were inoculated with untreated sewage and sampled on days 0, 1, 4, 8, 14, 28, and 50. Amplicon sequencing was performed on the DNA extracted from water and sediment samples, and SourceTracker was used to determine the decay of sewage-associated bacterial communities and how they change following a contamination event. No sewage-associated operational taxonomic units (OTUs) were detected in water and sediment samples after day 4; however, the bacterial communities remained changed from their background measures, prior to sewage amendment. Following untreated sewage inoculation, the mesocosm that had the most diverse starting bacterial community recovered to about 60% of its initial community composition, whereas the least diverse bacterial community only recovered to about 30% of its initial community composition. This suggests that a more diverse bacterial community may play an important role in water quality outcomes after sewage contamination events. Further investigation into potential links between bacterial communities and measures of fecal indicators, pathogens, and microbial source tracking (MST) markers is warranted and may provide insight for recreational water decision-makers.
View less >
View more >Understanding the microbial quality of recreational waters is critical to effectively managing human health risks. In recent years, the development of new molecular methods has provided scientists with alternatives to the use of culture-based fecal indicator methods for investigating sewage contamination in recreational waters. Before these methods can be formalized into guidelines, however, we must investigate their utility, including strengths and weaknesses in different environmental media. In this study, we investigated the decay of sewage-associated bacterial communities in water and sediment from three recreational areas in Southeast Queensland, Australia. Outdoor mesocosms with water and sediment samples from two marine and one freshwater sites were inoculated with untreated sewage and sampled on days 0, 1, 4, 8, 14, 28, and 50. Amplicon sequencing was performed on the DNA extracted from water and sediment samples, and SourceTracker was used to determine the decay of sewage-associated bacterial communities and how they change following a contamination event. No sewage-associated operational taxonomic units (OTUs) were detected in water and sediment samples after day 4; however, the bacterial communities remained changed from their background measures, prior to sewage amendment. Following untreated sewage inoculation, the mesocosm that had the most diverse starting bacterial community recovered to about 60% of its initial community composition, whereas the least diverse bacterial community only recovered to about 30% of its initial community composition. This suggests that a more diverse bacterial community may play an important role in water quality outcomes after sewage contamination events. Further investigation into potential links between bacterial communities and measures of fecal indicators, pathogens, and microbial source tracking (MST) markers is warranted and may provide insight for recreational water decision-makers.
View less >
Journal Title
Applied Microbiology and Biotechnology
Volume
102
Issue
16
Subject
Other health sciences not elsewhere classified
Other biomedical and clinical sciences not elsewhere classified