• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Litter amendment rather than phosphorus can dramatically change inorganic nitrogen pools in a degraded grassland soil by affecting nitrogen-cycling microbes

    Author(s)
    Che, Rongxiao
    Qin, Jinling
    Tahmasbian, Iman
    Wang, Fang
    Zhou, Shutong
    Xu, Zhihong
    Cui, Xiaoyong
    Griffith University Author(s)
    Xu, Zhihong
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Phosphorus fertilisation and increasing litter input are widely employed to restore the degraded grasslands. Despite the key roles of nitrogen-cycling microbes in determining the soil nitrogen dynamics and development of grassland degradation, little is known about their responses to these restoration efforts. Here, a microcosm experiment, with soils collected from a degraded Tibetan alpine meadow, was conducted to investigate the responses of nitrogen-cycling microbes to litter and phosphorus amendments, and their links with the changes in soil properties. Copies of the corresponding nitrogen-cycling genes (nifH, amoA, narG, ...
    View more >
    Phosphorus fertilisation and increasing litter input are widely employed to restore the degraded grasslands. Despite the key roles of nitrogen-cycling microbes in determining the soil nitrogen dynamics and development of grassland degradation, little is known about their responses to these restoration efforts. Here, a microcosm experiment, with soils collected from a degraded Tibetan alpine meadow, was conducted to investigate the responses of nitrogen-cycling microbes to litter and phosphorus amendments, and their links with the changes in soil properties. Copies of the corresponding nitrogen-cycling genes (nifH, amoA, narG, nirK, and nirS genes) and their mRNAs were determined using real-time PCR. The results showed that the litter amendment significantly stimulated the transcription of nifH and nirS genes, but reduced the copies of amoA gene and bacterial amoA mRNA. It also significantly increased soil dissolved organic carbon, available phosphorus, ammonium nitrogen, and microbial biomass concentrations, but decreased soil inorganic and nitrate nitrogen concentrations. The phosphorus amendment exerted little effects on soil properties and nitrogen-cycling microbes, while the litter-phosphorus interactions significantly offset the individual negative effects of the litter and phosphorus amendments on the denitrifier abundance. The soil nitrate and inorganic nitrogen concentrations were positively correlated with the amoA genes and bacterial amoA mRNA copies, but negatively correlated with nirS mRNA copies. These results indicate that litter addition may decrease soil nitrate and inorganic nitrogen concentrations by suppressing nitrifiers and stimulating nirS gene expression, highlighting the vital roles of nitrogen-cycling microbes in determining the soil nitrogen dynamics during the restoration of degraded grasslands.
    View less >
    Journal Title
    Soil Biology and Biochemistry
    Volume
    120
    DOI
    https://doi.org/10.1016/j.soilbio.2018.02.006
    Subject
    Environmental sciences
    Soil sciences not elsewhere classified
    Biological sciences
    Agricultural, veterinary and food sciences
    Nitrogen cycling microbes
    Meta-gene expression
    Soil inorganic nitrogen
    Grassland degradation
    Grassland restoration
    Tibetan plateau
    Publication URI
    http://hdl.handle.net/10072/381555
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander