• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • The effect of substrate compaction on plant water use and the implications for phytocap design specifications

    Thumbnail
    View/Open
    MichaelPUB7107.pdf (755.3Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Michael, Ruby N
    Yu, Bofu
    Wintle, Brendan A
    Doronila, Ignatius A
    Yuen, Samuel TS
    Griffith University Author(s)
    Yu, Bofu
    Michael, Ruby N.
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    There is little experimental evidence to guide the design of substrate compaction for the optimal plant water use performance of a landfill phytocap. A glasshouse study was undertaken to address this with aim to evaluate the effect of substrate compaction on the water use of a phytocap plant community. Four levels of relative compaction (RC), i.e. the ratio of dry bulk density over the standard maximum dry bulk density, (72%, 77%, 82%, and 87%) were considered. The native tree and grass species selected were typical of an Australian phytocap plant community: Themeda triandra, Microlaena stipoides, Eucalyptus camaldulensis, ...
    View more >
    There is little experimental evidence to guide the design of substrate compaction for the optimal plant water use performance of a landfill phytocap. A glasshouse study was undertaken to address this with aim to evaluate the effect of substrate compaction on the water use of a phytocap plant community. Four levels of relative compaction (RC), i.e. the ratio of dry bulk density over the standard maximum dry bulk density, (72%, 77%, 82%, and 87%) were considered. The native tree and grass species selected were typical of an Australian phytocap plant community: Themeda triandra, Microlaena stipoides, Eucalyptus camaldulensis, Eucalyptus cladocalyx, Acacia mearnsii and Allocasuarina verticillata. Plant water use was measured by weight as the difference between planted and unplanted cores over 5 drying periods occurring through the first 6 months of plant establishment traversing winter, spring and summer. Plant water use was optimal for all species at low-intermediate RC (72%, 77% and 82%), and all species except Themeda triandra, were most negatively impacted by the highest RC of 87%. The best linear model based on Akaike’s Information Criterion included a second-order term for the continuous fixed factor ‘RC’ and the categorical fixed factor ‘species’. This model showed plant water use to be optimum at a RC of 76.5% and highlighted a wide range of RC’s (70–83%), for which plant water use is not <90% of this optimum. It also highlighted increasing plant water use-sensitivity to RC’s beyond these ranges, with a RC > 86% and a RC < 67% leading to reductions in plant water use of 20% or more. Substrate specifications are recommended to optimize phytocap plant water use within achievable RC ranges. These can be generalized beyond application to a single species or substrate texture to inform the design and quality assurance of substrate placement for future landfill phytocaps.
    View less >
    Journal Title
    Ecological Engineering
    Volume
    127
    DOI
    https://doi.org/10.1016/j.ecoleng.2018.11.023
    Copyright Statement
    © 2019 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence, which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Earth sciences
    Environmental sciences
    Engineering
    Other engineering not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/381598
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander