• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Effects of nitrification inhibitor and herbicides on nitrification, nitrite and nitrate consumptions and nitrous oxide emission in an Australian sugarcane soil

    Author(s)
    Zhang, Manyun
    Wang, Weijin
    Tang, Li
    Heenan, Marijke
    Xu, Zhihong
    Griffith University Author(s)
    Xu, Zhihong
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    This study evaluated the impacts of a nitrification inhibitor (3,4-dimethylpyrazole phosphate, DMPP) and herbicides (atrazine and glyphosate) on nitrification, gross nitrite, and nitrate (NO2 − -N + NO3 − -N) consumption rate, nitrous oxide (N2O) emission, and abundances of microbial functional genes related to nitrogen (N) cycling in an Australian sugarcane soil. The experiment included four treatments: blank control (CK), DMPP application (NI), atrazine application (ATR), and glyphosate application (GLY). All treatments received (NH4)2SO4 at 50 mg N kg−1 dry soil and KNO3 at 50 mg N kg−1 dry soil and were incubated initially ...
    View more >
    This study evaluated the impacts of a nitrification inhibitor (3,4-dimethylpyrazole phosphate, DMPP) and herbicides (atrazine and glyphosate) on nitrification, gross nitrite, and nitrate (NO2 − -N + NO3 − -N) consumption rate, nitrous oxide (N2O) emission, and abundances of microbial functional genes related to nitrogen (N) cycling in an Australian sugarcane soil. The experiment included four treatments: blank control (CK), DMPP application (NI), atrazine application (ATR), and glyphosate application (GLY). All treatments received (NH4)2SO4 at 50 mg N kg−1 dry soil and KNO3 at 50 mg N kg−1 dry soil and were incubated initially at 55% of water holding capacity (WHC) for 7 days and subsequently at 75% WHC for another 7 days (K15NO3 with 5 atom% 15N added at the beginning of each stage). Compared with the CK treatment, DMPP application significantly decreased N2O emissions throughout the incubation, while atrazine or glyphosate application significantly inhibited N2O emissions only during the 4–7-day period. DMPP application also decreased ammoniumoxidizing bacteria (AOB) amoA gene abundances, gross NO2 − -N + NO3 − -N consumption rates at 55 and 75% WHC, and nirS and nirK gene abundances of denitrifiers at 75% WHC. The atrazine and glyphosate applications decreased the gross nitrification and NO2 − -N + NO3 − -N consumption rates, abundances of both ammonium-oxidizing archaea (AOA) and AOB amoA genes at 55 and 75% WHC, and abundances of functional genes related to different reactions of the denitrification during the incubation. These results suggested that DMPP, atrazine, and glyphosate could decrease soil gross nitrification and denitrification rates perhaps by inhibiting microbial functional gene abundances and that application of DMPP could effectively reduce N2O emissions in the sugarcane cropping soil.
    View less >
    Journal Title
    Biology and Fertility of Soils
    Volume
    54
    Issue
    6
    DOI
    https://doi.org/10.1007/s00374-018-1293-6
    Subject
    Environmental sciences
    Biological sciences
    Other biological sciences not elsewhere classified
    Agricultural, veterinary and food sciences
    3,4-dimethylpyrazole phosphate (DMPP)
    Atrazine
    Glyphosate
    Gross nitrification
    N2O emission
    Functional gene abundance
    Publication URI
    http://hdl.handle.net/10072/381694
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander