Show simple item record

dc.contributor.authorHoang-Phuong, Phan
dc.contributor.authorTuan-Khoa, Nguyen
dc.contributor.authorToan, Dinh
dc.contributor.authorCheng, Han-Hao
dc.contributor.authorMu, Fengwen
dc.contributor.authorIacopi, Alan
dc.contributor.authorHold, Leonie
dc.contributor.authorDzung, Viet Dao
dc.contributor.authorSuga, Tadatomo
dc.contributor.authorSenesky, Debbie G
dc.contributor.authorNam-Trung, Nguyen
dc.date.accessioned2019-06-07T01:33:00Z
dc.date.available2019-06-07T01:33:00Z
dc.date.issued2018
dc.identifier.issn1862-6300
dc.identifier.doi10.1002/pssa.201800288
dc.identifier.urihttp://hdl.handle.net/10072/381856
dc.description.abstractThis work reports the strain effect on the electrical properties of highly doped n‐type single crystalline cubic silicon carbide (3C‐SiC) transferred onto a 6‐inch glass substrate employing an anodic bonding technique. The experimental data shows high gauge factors of −8.6 in longitudinal direction and 10.5 in transverse direction along the [100] orientation. The piezoresistive effect in the highly doped 3C‐SiC film also exhibits an excellent linearity and consistent reproducibility after several bending cycles. The experimental result is in good agreement with the theoretical analysis based on the phenomenon of electron transfer between many valleys in the conduction band of n‐type 3C‐SiC. Our finding for the large gauge factor in n‐type 3C‐SiC coupled with the elimination of the current leak to the insulated substrate could pave the way for the development of single crystal SiC‐on‐glass based MEMS applications.
dc.description.peerreviewedYes
dc.languageEnglish
dc.publisherJohn Wiley & Sons
dc.publisher.placeGermany
dc.relation.ispartofchapter1800288
dc.relation.ispartofpagefrom1
dc.relation.ispartofpageto6
dc.relation.ispartofissue24
dc.relation.ispartofjournalPhysica Status Solidi A: Applications and Materials Science
dc.relation.ispartofvolume215
dc.subject.fieldofresearchMicroelectromechanical Systems (MEMS)
dc.subject.fieldofresearchCondensed Matter Physics
dc.subject.fieldofresearchMaterials Engineering
dc.subject.fieldofresearchNanotechnology
dc.subject.fieldofresearchcode091306
dc.subject.fieldofresearchcode0204
dc.subject.fieldofresearchcode0912
dc.subject.fieldofresearchcode1007
dc.subject.keywordsStrain effect
dc.subject.keywordsCrystalline cubic silicon carbide
dc.subject.keywordsPiezoresistive effect
dc.subject.keywordsElectron transfer
dc.titleStrain effect in highly-doped n-type 3C-SiC-on-glass substrate for mechanical sensors and mobility enhancement
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
gro.facultyGriffith Sciences, School of Engineering and Built Environment
gro.hasfulltextNo Full Text
gro.griffith.authorIacopi, Alan V.
gro.griffith.authorHold, Leonie K.
gro.griffith.authorDao, Dzung V.
gro.griffith.authorNguyen, Nam-Trung
gro.griffith.authorPhan, Hoang Phuong
gro.griffith.authorDinh, Toan K.
gro.griffith.authorNguyen Tuan, Khoa


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record