• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Analysis and modelling of powdered activated carbon dosing for taste and odour removal

    Thumbnail
    View/Open
    BertonePUB6078.pdf (2.294Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Bertone, Edoardo
    Chang, Carol
    Thiel, Peta
    O'Halloran, Kelvin
    Griffith University Author(s)
    Bertone, Edoardo
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    A series of experiments were undertaken in order to understand and predict the dosage of powdered activated carbon required to remove taste and odour compounds in an Australian drinking water treatment plant. Competitive effects with organic matter removal by aluminium sulphate during coagulation were also quantified. Data on raw and finished water quality following jar tests, as well as chemical dosages and treatment performance, were statistically analysed, and a data-driven prediction model was developed. The developed powdered activated carbon dosage prediction model can be used by the plant operators for rapid dosage ...
    View more >
    A series of experiments were undertaken in order to understand and predict the dosage of powdered activated carbon required to remove taste and odour compounds in an Australian drinking water treatment plant. Competitive effects with organic matter removal by aluminium sulphate during coagulation were also quantified. Data on raw and finished water quality following jar tests, as well as chemical dosages and treatment performance, were statistically analysed, and a data-driven prediction model was developed. The developed powdered activated carbon dosage prediction model can be used by the plant operators for rapid dosage assessment and can increase the preparedness of the plant to sudden taste and odour events. It was also found that total organic carbon levels and properties greatly affect the ability of powdered activated carbon to remove taste and odour compounds; on the other hand, total organic carbon removal is not affected by high taste and odour levels, since these were still much lower than organic carbon concentrations.
    View less >
    Journal Title
    Water Research
    Volume
    139
    DOI
    https://doi.org/10.1016/j.watres.2018.04.023
    Copyright Statement
    © 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Environmental management not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/381892
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander