Subject-specific calibration of neuromuscular parameters enables neuromusculoskeletal models to estimate physiologically plausible hip joint contact forces in healthy adults

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Hoang, Hoa X
Pizzolato, Claudio
Diamond, Laura E
Lloyd, David G
Year published
2018
Metadata
Show full item recordAbstract
In-vivo hip joint contact forces (HJCF) can be estimated using computational neuromusculoskeletal (NMS) modelling. However, different neural solutions can result in different HJCF estimations. NMS model predictions are also influenced by the selection of neuromuscular parameters, which are either based on cadaveric data or calibrated to the individual. To date, the best combination of neural solution and parameter calibration to obtain plausible estimations of HJCF have not been identified. The aim of this study was to determine the effect of three electromyography (EMG)-informed neural solution modes (EMG-driven, EMG-hybrid, ...
View more >In-vivo hip joint contact forces (HJCF) can be estimated using computational neuromusculoskeletal (NMS) modelling. However, different neural solutions can result in different HJCF estimations. NMS model predictions are also influenced by the selection of neuromuscular parameters, which are either based on cadaveric data or calibrated to the individual. To date, the best combination of neural solution and parameter calibration to obtain plausible estimations of HJCF have not been identified. The aim of this study was to determine the effect of three electromyography (EMG)-informed neural solution modes (EMG-driven, EMG-hybrid, and EMG-assisted) and static optimisation, each using three different parameter calibrations (uncalibrated, minimise joint moments error, and minimise joint moments error and peak HJCF), on the estimation of HJCF in a healthy population (n = 23) during walking. When compared to existing in-vivo data, the EMG-assisted mode and static optimisation produced the most physiologically plausible HJCF when using a NMS model calibrated to minimise joint moments error and peak HJCF. EMG-assisted mode produced first and second peaks of 3.55 times body weight (BW) and 3.97 BW during walking; static optimisation produced 3.75 BW and 4.19 BW, respectively. However, compared to static optimisation, EMG-assisted mode generated muscle excitations closer to recorded EMG signals (average across hip muscles R2 = 0.60 ± 0.37 versus R2 = 0.12 ± 0.14). Findings suggest that the EMG-assisted mode combined with minimise joint moments error and peak HJCF calibration is preferable for the estimation of HJCF and generation of realistic load distribution across muscles.
View less >
View more >In-vivo hip joint contact forces (HJCF) can be estimated using computational neuromusculoskeletal (NMS) modelling. However, different neural solutions can result in different HJCF estimations. NMS model predictions are also influenced by the selection of neuromuscular parameters, which are either based on cadaveric data or calibrated to the individual. To date, the best combination of neural solution and parameter calibration to obtain plausible estimations of HJCF have not been identified. The aim of this study was to determine the effect of three electromyography (EMG)-informed neural solution modes (EMG-driven, EMG-hybrid, and EMG-assisted) and static optimisation, each using three different parameter calibrations (uncalibrated, minimise joint moments error, and minimise joint moments error and peak HJCF), on the estimation of HJCF in a healthy population (n = 23) during walking. When compared to existing in-vivo data, the EMG-assisted mode and static optimisation produced the most physiologically plausible HJCF when using a NMS model calibrated to minimise joint moments error and peak HJCF. EMG-assisted mode produced first and second peaks of 3.55 times body weight (BW) and 3.97 BW during walking; static optimisation produced 3.75 BW and 4.19 BW, respectively. However, compared to static optimisation, EMG-assisted mode generated muscle excitations closer to recorded EMG signals (average across hip muscles R2 = 0.60 ± 0.37 versus R2 = 0.12 ± 0.14). Findings suggest that the EMG-assisted mode combined with minimise joint moments error and peak HJCF calibration is preferable for the estimation of HJCF and generation of realistic load distribution across muscles.
View less >
Journal Title
Journal of Biomechanics
Volume
80
Copyright Statement
© 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence, which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Subject
Biomedical engineering
Biomedical engineering not elsewhere classified
Mechanical engineering
Sports science and exercise