• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • High-frequency fire alters soil and plant chemistry but does not lead to nitrogen-limited growth of Eucalyptus pilularis seedlings

    Author(s)
    Butler, Orpheus M
    Rashti, Mehran Rezaei
    Lewis, Tom
    Elser, James J
    Chen, Chengrong
    Griffith University Author(s)
    Chen, Chengrong
    Rezaei Rashti, Mehran
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Background and aims: Vegetation fire often raises levels of soil phosphorus (P) relative to those of nitrogen (N), while long-term fire exclusion is associated with accumulation of soil N and depletion of soil available P. Thus, high-frequency fire regimes might trigger N-limited plant growth in otherwise P-limited plant communities. Methods: We used soils from a long-term prescribed burning trial to grow Eucalyptus pilularis under several nutrient amendment conditions. We measured seedling growth, soil and plant chemistry, and root enzyme activities to assess nutrient status. Results: Biennially-burned (2yB) soils had ...
    View more >
    Background and aims: Vegetation fire often raises levels of soil phosphorus (P) relative to those of nitrogen (N), while long-term fire exclusion is associated with accumulation of soil N and depletion of soil available P. Thus, high-frequency fire regimes might trigger N-limited plant growth in otherwise P-limited plant communities. Methods: We used soils from a long-term prescribed burning trial to grow Eucalyptus pilularis under several nutrient amendment conditions. We measured seedling growth, soil and plant chemistry, and root enzyme activities to assess nutrient status. Results: Biennially-burned (2yB) soils had higher labile P concentrations than long-unburned (NB) soils, and lower total and labile N:P ratios. This did not correspond to N-limited growth or stimulate seedling N demand. Seedlings grown with addition of N, P and micro-nutrients in combination (μMax treatment) attained 68% more biomass than unfertilised seedlings. Addition of P resulted in higher total biomass than addition of N, and similar biomass to the μMax treatment, suggesting partially P-limited growth. Plants grown in 2yB soils tended to be enriched with P, K, Ca and Mg compared to those grown in NB or 4yB soils. Conclusions: High-frequency prescribed burning depletes soil N relative to P, but this does not trigger a shift toward N-limited growth of E. pilularis seedlings. Instead, E. pilularis seedlings appear to grow under partial P-limitation which persists regardless of their soil’s fire history.
    View less >
    Journal Title
    Plant and Soil
    Volume
    432
    Issue
    1-2
    DOI
    https://doi.org/10.1007/s11104-018-3797-0
    Subject
    Environmental sciences
    Other environmental sciences not elsewhere classified
    Biological sciences
    Agricultural, veterinary and food sciences
    Publication URI
    http://hdl.handle.net/10072/381993
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander