• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Zero valent iron enhances methane production from primary sludge in anaerobic digestion

    Thumbnail
    View/Open
    WangPUB374.pdf (610.1Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Wei, Wei
    Cai, Zhengqing
    Fu, Jie
    Xie, Guo-Jun
    Li, Ang
    Zhou, Xu
    Ni, Bing-Jie
    Wang, Dongbo
    Wang, Qilin
    Griffith University Author(s)
    Wang, Qilin
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    This study proposed a novel zero valent iron (ZVI) technology to enhance anaerobic methane production from primary sludge in the anaerobic digester and to improve the dewaterability of digested sludge for the first time. Compared to the control test without ZVI, the anaerobic digester with ZVI at all levels (1, 4 and 20 g/L) played a driving role in anaerobic methane production from primary sludge. The maximal biochemical methane production of 439 ± 5 L CH4/kg VS was achieved at ZVI of 4 g/L, while only 345 ± 2 L CH4/kg VS (volatile solids) was produced in the case of no-ZVI dosage, representing a relative increase of ...
    View more >
    This study proposed a novel zero valent iron (ZVI) technology to enhance anaerobic methane production from primary sludge in the anaerobic digester and to improve the dewaterability of digested sludge for the first time. Compared to the control test without ZVI, the anaerobic digester with ZVI at all levels (1, 4 and 20 g/L) played a driving role in anaerobic methane production from primary sludge. The maximal biochemical methane production of 439 ± 5 L CH4/kg VS was achieved at ZVI of 4 g/L, while only 345 ± 2 L CH4/kg VS (volatile solids) was produced in the case of no-ZVI dosage, representing a relative increase of 26.9 ± 0.1%. It was also found that ZVI addition would produce an anaerobically digested sludge with a better dewaterability, as indicated by the decrease of the normalized capillary suction time from 100 to 63 ∼ 89 s, respectively. Model based analysis revealed that the enhanced methane production from primary sludge was due to an increase in both hydrolysis rate and biochemical methane potential of primary sludge. Economic analysis demonstrated that ZVI technology was economically favorable.
    View less >
    Journal Title
    Chemical Engineering Journal
    Volume
    351
    DOI
    https://doi.org/10.1016/j.cej.2018.06.160
    Copyright Statement
    © 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Chemical engineering
    Chemical engineering not elsewhere classified
    Civil engineering
    Environmental engineering
    Anaerobic digestion
    Zero valent iron
    Primary sludge
    Methane production
    Dewaterability
    Publication URI
    http://hdl.handle.net/10072/382003
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander