• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Two-Step Activated Carbon Cloth with Oxygen-Rich Functional Groups as a High-Performance Additive-Free Air Electrode for Flexible Zinc-Air Batteries

    Author(s)
    Kordek, Karolina
    Jiang, Lixue
    Fan, Kaicai
    Zhu, Zhengju
    Xu, Li
    Al-Mamun, Mohammad
    Dou, Yuhai
    Chen, Shan
    Liu, Porun
    Yin, Huajie
    Rutkowski, Piotr
    Zhao, Huijun
    Griffith University Author(s)
    Zhao, Huijun
    Liu, Porun
    Dou, Yuhai
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    A flexible air electrode (FAE) with both high oxygen electrocatalytic activity and excellent flexibility is the key to the performance of various flexible devices, such as Zn–air batteries. A facile two‐step method, mild acid oxidation followed by air calcination that directly activates commercial carbon cloth (CC) to generate uniform nanoporous and super hydrophilic surface structures with optimized oxygen‐rich functional groups and an enhanced surface area, is presented here. Impressively, this two‐step activated CC (CC‐AC) exhibits superior oxygen electrocatalytic activity and durability, outperforming the oxygen‐doped ...
    View more >
    A flexible air electrode (FAE) with both high oxygen electrocatalytic activity and excellent flexibility is the key to the performance of various flexible devices, such as Zn–air batteries. A facile two‐step method, mild acid oxidation followed by air calcination that directly activates commercial carbon cloth (CC) to generate uniform nanoporous and super hydrophilic surface structures with optimized oxygen‐rich functional groups and an enhanced surface area, is presented here. Impressively, this two‐step activated CC (CC‐AC) exhibits superior oxygen electrocatalytic activity and durability, outperforming the oxygen‐doped carbon materials reported to date. Especially, CC‐AC delivers an oxygen evolution reaction (OER) overpotential of 360 mV at 10 mA cm−2 in 1 m KOH, which is among the best performances of metal‐free OER electrocatalysts. The practical application of CC‐AC is presented via its use as an FAE in a flexible rechargeable Zn–air battery. The bendable battery achieves a high open circuit voltage of 1.37 V, a remarkable peak power density of 52.3 mW cm−3 at 77.5 mA cm−3, good cycling performance with a small charge–discharge voltage gap of 0.98 V and high flexibility. This study provides a new approach to the design and construction of high‐performance self‐supported metal‐free electrodes.
    View less >
    Journal Title
    Advanced Energy Materials
    DOI
    https://doi.org/10.1002/aenm.201802936
    Note
    This publication has been entered into Griffith Research Online as an Advanced Online Version.
    Subject
    Macromolecular and materials chemistry
    Other chemical sciences not elsewhere classified
    Materials engineering
    Other engineering
    Publication URI
    http://hdl.handle.net/10072/382028
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander