• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Seafloor ecological functioning over two decades of organic enrichment

    Author(s)
    Caswell, Bryony A
    Paine, Miranda
    Frid, Christopher LJ
    Griffith University Author(s)
    Frid, Chris L.
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Climate change and anthropogenic nutrient enrichment are driving rapid increases in ocean deoxygenation. These changes cause biodiversity loss and have severe consequences for marine ecosystem functioning and in turn the delivery of ecosystem services upon which humanity depends (e.g. fisheries). We seek to understand how such changes will impact seafloor functioning using biological traits analysis. Results from a sewage-sludge disposal site in the Firth of Clyde, UK spanning 26 years of monitoring showed that substantial changes in macrobenthic nutrient cycling and the provision of food for predators occurred, with elevated ...
    View more >
    Climate change and anthropogenic nutrient enrichment are driving rapid increases in ocean deoxygenation. These changes cause biodiversity loss and have severe consequences for marine ecosystem functioning and in turn the delivery of ecosystem services upon which humanity depends (e.g. fisheries). We seek to understand how such changes will impact seafloor functioning using biological traits analysis. Results from a sewage-sludge disposal site in the Firth of Clyde, UK spanning 26 years of monitoring showed that substantial changes in macrobenthic nutrient cycling and the provision of food for predators occurred, with elevated functioning on the margins 1–2 km from the centre of the disposal grounds. Thus, changes in food-web dynamics are expected, that weaken benthic pelagic coupling and lower secondary production (such as fisheries). Generally, functioning was conserved, but declined below a ~6% total organic carbon threshold. Similar to other severely deoxygenated systems, the recovery was slow and hysteresis was apparent.
    View less >
    Journal Title
    Marine Pollution Bulletin
    Volume
    136
    DOI
    https://doi.org/10.1016/j.marpolbul.2018.08.041
    Subject
    Environmental marine biotechnology
    Publication URI
    http://hdl.handle.net/10072/382033
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander