Show simple item record

dc.contributor.authorLi, Huien_US
dc.contributor.authorZhao, Xiaoliangen_US
dc.contributor.authorLiu, Honglien_US
dc.contributor.authorChen, Shuaien_US
dc.contributor.authorYang, Xianfengen_US
dc.contributor.authorLv, Chunxiaoen_US
dc.contributor.authorZhang, Huaweien_US
dc.contributor.authorShe, Xilinen_US
dc.contributor.authorYang, Dongjiangen_US
dc.date.accessioned2019-06-07T01:44:08Z
dc.date.available2019-06-07T01:44:08Z
dc.date.issued2018en_US
dc.identifier.issn1613-6829en_US
dc.identifier.doi10.1002/smll.201802824en_US
dc.identifier.urihttp://hdl.handle.net/10072/382075
dc.description.abstractTransition metal phosphides (TMPs) are certified high performance electrocatalysts for the hydrogen evolution reaction (HER). The ultrathin 2D structure of TMPs can offer abundant adsorption sites to boost HER performance. Herein, an ice‐templating strategy is developed to prepare CoP aerogels composed of 2D ultrathin CoP nanosheets (<1.5 nm) using sustainable alginate biomass (seaweed extract) as the precursor. The highly porous aerogel structure can not only deliver facile mass transfer, but also prevent aggregation of the nanosheets into layered structures. As expected, the obtained CoP nanosheet aerogels exhibit remarkable stability and excellent electrocatalytic HER performance at all pH values. For instance, the sample CoP‐400 presents a low overpotential of 113, 154, and 161 mV versus RHE at a current density of 10 mA cm−2 in 0.5 m H2SO4, 1 m KOH, and 1 m phosphate buffer solution, respectively. In addition, CoP‐400 displays low Tafel slopes at all pH values due to the interconnected highly porous structure of the aerogel, indicating that the sample can provide low‐resistance channels for mass transport. Density functional theory calculations reveal that P‐top and Co bridge on (011) facet of CoP are more favorable sites during the process of HER in acid and alkaline solutions, respectively.en_US
dc.description.peerreviewedYesen_US
dc.languageEnglishen_US
dc.publisherJohn Wiley & Sonsen_US
dc.publisher.placeGermanyen_US
dc.relation.ispartofchapter1802824en_US
dc.relation.ispartofpagefrom1en_US
dc.relation.ispartofpageto9en_US
dc.relation.ispartofissue41en_US
dc.relation.ispartofjournalSmallen_US
dc.relation.ispartofvolume14en_US
dc.subject.fieldofresearchEnvironmental Sciences not elsewhere classifieden_US
dc.subject.fieldofresearchMultidisciplinaryen_US
dc.subject.fieldofresearchcode059999en_US
dc.subject.fieldofresearchcodeMDen_US
dc.subject.keywordsAll pH valuesen_US
dc.subject.keywordsDFT calculationsen_US
dc.subject.keywordsHydrogen evolution reactionen_US
dc.subject.keywordsIce‐templatingen_US
dc.subject.keywordsUltrathin CoP nanosheet aerogelen_US
dc.titleSub-1.5 nm Ultrathin CoP Nanosheet Aerogel: Efficient Electrocatalyst for Hydrogen Evolution Reaction at All pH Valuesen_US
dc.typeJournal articleen_US
dc.type.descriptionC1 - Articlesen_US
dc.type.codeC - Journal Articlesen_US
gro.hasfulltextNo Full Text


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record