• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A high-volumetric-capacity and high-areal-capacity ZnCo2O4 anode for Li-ion batteries enabled by a robust biopolymer binder

    Author(s)
    Liu, Jie
    Xuan, Yuxue
    Galpaya, Dilini GD
    Gu, Yuanxiang
    Lin, Zhan
    Zhang, Shanqing
    Yan, Cheng
    Feng, Shouhua
    Wang, Lei
    Griffith University Author(s)
    Zhang, Shanqing
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Constructing high-areal-capacity anodes with high loading for Li-ion batteries is still an enormous challenge, due to the drastic volume change of large-capacity anode materials during cycling. The conventional PVDF binder system fails to withstand the degradation of high-loading electrodes. Therefore, advanced binders are urgently required. Herein, for the first time, the guar gum (GG) biopolymer has been exploited as a robust binder for micro-sized ZnCo2O4 (ZCO) anode materials. Because of its robust mechanical properties and strong interactions with ZCO, the cycling stability of the ZCO anode has been significantly improved ...
    View more >
    Constructing high-areal-capacity anodes with high loading for Li-ion batteries is still an enormous challenge, due to the drastic volume change of large-capacity anode materials during cycling. The conventional PVDF binder system fails to withstand the degradation of high-loading electrodes. Therefore, advanced binders are urgently required. Herein, for the first time, the guar gum (GG) biopolymer has been exploited as a robust binder for micro-sized ZnCo2O4 (ZCO) anode materials. Because of its robust mechanical properties and strong interactions with ZCO, the cycling stability of the ZCO anode has been significantly improved with a capacity of 412 mA h g−1 after 600 cycles at 1200 mA g−1. More importantly, the ZCO can act as a “crosslinking agent” to in situ form a robust network with GG, which efficiently maintains the electrode structure stability. Hence, a ZCO anode with an ultrahigh loading of 6.73 mg cm−2 can be achieved and deliver a high areal capacity of 5.6 mA h cm−2. Simultaneously, benefiting from the high tap density of micro-ZCO, the ZCO anode gives a high volumetric capacity of 1179 mA h cm−3. This study will make a significant contribution to accelerating the progress of designing high-areal-capacity anodes.
    View less >
    Journal Title
    Journal of Materials Chemistry A
    Volume
    6
    DOI
    https://doi.org/10.1039/C8TA07840H
    Subject
    Macromolecular and materials chemistry
    Macromolecular and materials chemistry not elsewhere classified
    Materials engineering
    Other engineering
    Anodes
    Li-ion batteries
    PVDF binder system
    High-loading electrodes
    Herein
    Guar gum (GG) biopolymer
    ZnCo2O4 (ZCO) anode materials
    Publication URI
    http://hdl.handle.net/10072/382087
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander