• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Nature-based catalyst for visible-light-driven photocatalytic CO2 reduction

    Thumbnail
    View/Open
    ZhaoPUB472.pdf (1.396Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Jiang, Zhifeng
    Sun, Hongli
    Wang, Tianqi
    Wang, Bo
    Wei, Wei
    Li, Huaming
    Yuan, Shouqi
    An, Taicheng
    Zhao, Huijun
    Yu, Jiaguo
    Wong, Po Keung
    Griffith University Author(s)
    Zhao, Huijun
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    We demonstrate a rational fabrication of hierarchical treated rape pollen (TRP), a biological material used as a metal-free catalyst for visible-light-driven photocatalytic CO2 reduction. The TRP catalyst exhibits excellent visible-light-driven carbon monoxide (CO) formation of 488.4 μmol h−1 g−1 with 98.3% selectivity, using no co-catalyst or sacrifice reagent, accompanied by a high quantum efficiency of over 6.7% at 420 nm. The CO evolution rate obtained on the TRP catalyst is roughly 29.4 and 25.6 times higher than those of the most commonly reported photocatalysts, such as g-C3N4 (16.6 μmol h−1 g−1) and P25 TiO2 (19.1 ...
    View more >
    We demonstrate a rational fabrication of hierarchical treated rape pollen (TRP), a biological material used as a metal-free catalyst for visible-light-driven photocatalytic CO2 reduction. The TRP catalyst exhibits excellent visible-light-driven carbon monoxide (CO) formation of 488.4 μmol h−1 g−1 with 98.3% selectivity, using no co-catalyst or sacrifice reagent, accompanied by a high quantum efficiency of over 6.7% at 420 nm. The CO evolution rate obtained on the TRP catalyst is roughly 29.4 and 25.6 times higher than those of the most commonly reported photocatalysts, such as g-C3N4 (16.6 μmol h−1 g−1) and P25 TiO2 (19.1 μmol h−1 g−1), and is the highest among the reported carbon-based photocatalysts. In situ Fourier transform infrared spectrometry analysis disclosed that formic acid is a major intermediate. The considerable photocatalytic CO2 reduction activity observed on the TRP catalyst can be ascribed to the following factors: (i) the unique hollow porous structure of the TRP favours visible light harvesting and CO2 adsorption capacity; and (ii) the interior cavity of the TRP can decrease the diffusion length of the photogenerated reactive charge carrier from bulk to surface, thus promoting charge carrier separation. We anticipate that such a nature-based sustainable photocatalyst can provide new insights to facilitate the design of metal-free catalysts with outstanding visible-light-driven CO2 reduction performance.
    View less >
    Journal Title
    Energy and Environmental Science
    Volume
    11
    Issue
    9
    DOI
    https://doi.org/10.1039/C8EE01781F
    Copyright Statement
    © 2018 Royal Society of Chemistry. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
    Subject
    Other environmental sciences not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/382124
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander