• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Correlation between Mechanical Strength of Amorphous TiO2 Nanotubes and Their Solid State Crystallization Pathways

    Author(s)
    Gao, Zhonghui
    Hao, Zhangxiang
    Yi, Min
    Huang, Ying
    Xu, Yiming
    Zhao, Ying
    Li, Zhaoyang
    Zhu, Shengli
    Xu, Baixiang
    Liu, Porun
    Wang, Feng Ryan
    Huang, Yunhui
    Zhao, Huijun
    Yang, Xianjin
    Griffith University Author(s)
    Zhao, Huijun
    Liu, Porun
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Developing TiO2 crystals with specific morphologies and nanostructured architectures is highly desirable in energy storage, conversion and catalysis applications. Thermally activated amorphous‐to‐crystal transition provides effective growth of poly or monocrystalline TiO2, while an in‐depth understanding of different crystallization pathways at the solid state is still lacking. Herein, we report a close correlation between mechanical strength of the TiO2 precursors and their different crystallization pathways. Two different morphologies, i. e., well‐defined anatase TiO2 single nanocrystals and anatase polycrystalline nanotubes ...
    View more >
    Developing TiO2 crystals with specific morphologies and nanostructured architectures is highly desirable in energy storage, conversion and catalysis applications. Thermally activated amorphous‐to‐crystal transition provides effective growth of poly or monocrystalline TiO2, while an in‐depth understanding of different crystallization pathways at the solid state is still lacking. Herein, we report a close correlation between mechanical strength of the TiO2 precursors and their different crystallization pathways. Two different morphologies, i. e., well‐defined anatase TiO2 single nanocrystals and anatase polycrystalline nanotubes are obtained via rapid heating of two amorphous TiO2 precursors with distinctive mechanical strengths. The mechanical‐strength‐dependent crystallization from amorphous solid‐state precursors provides additional control on the crystallization pathway and thus the desirable properties of the resultant nanostructures. In this study, the well‐defined anatase nanocrystals with controlled morphology show higher storage capacity of sodium ion than that of polycrystalline ones in sodium ion batteries.
    View less >
    Journal Title
    ChemistrySelect
    Volume
    3
    Issue
    38
    DOI
    https://doi.org/10.1002/slct.201802588
    Subject
    Chemical sciences
    Other chemical sciences not elsewhere classified
    TiO2 nanotubes
    Nanoindentation
    Na-ion battery
    Mechanical strength
    Publication URI
    http://hdl.handle.net/10072/382212
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander