• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Methamphetamine self-administration and the effect of contingency on monoamine and metabolite tissue levels in the rat

    Author(s)
    Brennan, Katharine A.
    Colussi-Mas, Joyce
    Carati, Caleb
    Lea, Rodney
    Fitzmaurice, Paul S.
    Schenk, Susan
    Griffith University Author(s)
    Lea, Rodney A.
    Year published
    2010
    Metadata
    Show full item record
    Abstract
    A number of studies have shown that exposure to high doses of methamphetamine (MA) is toxic to central dopamine (DA) and serotonin (5-HT) neurons. In most of those studies, however, high doses of MA were experimenter-administered during a short exposure time. Because contingency is a determinant for many effects of drug exposure, the present objective was to investigate the effects of self-administered MA on tissue monoamine levels following a short (24 hours) or longer (7 days) withdrawal period. As previously reported, a noncontingent "binge" high-dose treatment regimen (4 injections of 10 mg/kg MA administered every 2 ...
    View more >
    A number of studies have shown that exposure to high doses of methamphetamine (MA) is toxic to central dopamine (DA) and serotonin (5-HT) neurons. In most of those studies, however, high doses of MA were experimenter-administered during a short exposure time. Because contingency is a determinant for many effects of drug exposure, the present objective was to investigate the effects of self-administered MA on tissue monoamine levels following a short (24 hours) or longer (7 days) withdrawal period. As previously reported, a noncontingent "binge" high-dose treatment regimen (4 injections of 10 mg/kg MA administered every 2 hours) produced persistent depletion of cortical 5-HT and striatal DA. Effects of self-administered MA (0.1 mg/kg/infusion) were then determined following a 20-day duration where a yoked design was employed such that some rats received MA contingent on an operant lever press and others received either MA or saline dependent on the responses of the contingent rat. Self-administered MA produced a transient striatal DA depletion with a more persistent increase in DA turnover, indicating the presence of some lasting adaptations. Furthermore, the yoked design revealed that there was no effect of contingency on these parameters.
    View less >
    Journal Title
    Brain Research
    Volume
    1317
    Issue
    4
    DOI
    https://doi.org/10.1016/j.brainres.2009.11.069
    Subject
    Cell Neurochemistry
    Neurosciences
    Psychology
    Cognitive Sciences
    Publication URI
    http://hdl.handle.net/10072/38224
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander