Laser-Based Metastable Krypton Generation

View/ Open
Author(s)
Dakka, MA
Tsiminis, G
Glover, RD
Perrella, C
Moffatt, J
Spooner, NA
Sang, RT
Light, PS
Luiten, AN
Griffith University Author(s)
Year published
2018
Metadata
Show full item recordAbstract
We demonstrate the generation of metastable krypton in the long-lived 1s5 state using laser excitation. The atoms are excited through a two-photon absorption process into the 2p6 state using a pulsed optical parametric oscillator laser operating near 215 nm, after which the atoms decay quickly into the metastable state with a branching ratio of 75%. The interaction dynamics are modeled using density matrix formalism and, by combining this with experimental observations, we are able to calculate photoionization and two-photon absorption cross sections. When compared to traditional approaches to metastable production, this ...
View more >We demonstrate the generation of metastable krypton in the long-lived 1s5 state using laser excitation. The atoms are excited through a two-photon absorption process into the 2p6 state using a pulsed optical parametric oscillator laser operating near 215 nm, after which the atoms decay quickly into the metastable state with a branching ratio of 75%. The interaction dynamics are modeled using density matrix formalism and, by combining this with experimental observations, we are able to calculate photoionization and two-photon absorption cross sections. When compared to traditional approaches to metastable production, this approach shows great potential for high-density metastable krypton production with minimal heating of the sample. Here, we show metastable production efficiencies of up to 2% per pulse. The new experimental results gained here, when combined with the density matrix model we have developed, suggest that fractional efficiencies up to 30% are possible under optimal conditions.
View less >
View more >We demonstrate the generation of metastable krypton in the long-lived 1s5 state using laser excitation. The atoms are excited through a two-photon absorption process into the 2p6 state using a pulsed optical parametric oscillator laser operating near 215 nm, after which the atoms decay quickly into the metastable state with a branching ratio of 75%. The interaction dynamics are modeled using density matrix formalism and, by combining this with experimental observations, we are able to calculate photoionization and two-photon absorption cross sections. When compared to traditional approaches to metastable production, this approach shows great potential for high-density metastable krypton production with minimal heating of the sample. Here, we show metastable production efficiencies of up to 2% per pulse. The new experimental results gained here, when combined with the density matrix model we have developed, suggest that fractional efficiencies up to 30% are possible under optimal conditions.
View less >
Journal Title
Physical Review Letters
Volume
121
Copyright Statement
© 2018 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Mathematical sciences
Physical sciences
Other physical sciences not elsewhere classified
Engineering