• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Feasibility of enhancing short-chain fatty acids production from waste activated sludge after free ammonia pretreatment: Role and significance of rhamnolipid

    Thumbnail
    View/Open
    WangPUB369.pdf (1.336Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Xu, Qiuxiang
    Liu, Xuran
    Fu, Yingying
    Li, Yifu
    Wang, Dongbo
    Wang, Qilin
    Liu, Yiwen
    An, Hongxue
    Zhao, Jianwei
    Wu, Yanxin
    Li, Xiaoming
    Yang, Qi
    Zeng, Guangming
    Griffith University Author(s)
    Wang, Qilin
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    This study reported a new, renewable and high-efficient strategy for anaerobic fermentation, i.e., using free ammonia (FA) to pretreat waste activated sludge (WAS) for 1 d and then combining with rhamnolipid (RL), by which the short-chain fatty acids (SCFA) production was remarkably improved. Experimental results showed the maximal SCFA production of 324.7 ± 13.9 mg COD/g VSS was achieved at 62.6 mg FA/L pretreatment combined with 0.04 g RL/g TSS, which was respectively 5.95-fold, 1.63-fold and 1.41-fold of that from control, FA pretreatment and RL pretreatment. Mechanism investigations revealed that FA + RL enhanced sludge ...
    View more >
    This study reported a new, renewable and high-efficient strategy for anaerobic fermentation, i.e., using free ammonia (FA) to pretreat waste activated sludge (WAS) for 1 d and then combining with rhamnolipid (RL), by which the short-chain fatty acids (SCFA) production was remarkably improved. Experimental results showed the maximal SCFA production of 324.7 ± 13.9 mg COD/g VSS was achieved at 62.6 mg FA/L pretreatment combined with 0.04 g RL/g TSS, which was respectively 5.95-fold, 1.63-fold and 1.41-fold of that from control, FA pretreatment and RL pretreatment. Mechanism investigations revealed that FA + RL enhanced sludge solubilization and hydrolysis, providing more organics for subsequent SCFA production. It was also found that the combined method inhibited acidogenesis and methanogenesis, but the inhibition to methanogenesis was much severer than that to acidogenesis. Finally, the feasibility of NH4+-N and PO3−4-P, released in fermentation liquor, being recovered as magnesium ammonium phosphate (MAP) was confirmed.
    View less >
    Journal Title
    Bioresource Technology
    Volume
    267
    DOI
    https://doi.org/10.1016/j.biortech.2018.07.018
    Copyright Statement
    © 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Other environmental sciences not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/382327
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander